IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v52y2004i5p690-706.html
   My bibliography  Save this article

Computation of Minimum-Volume Covering Ellipsoids

Author

Listed:
  • Peng Sun

    (The Fuqua School of Business, Duke University, Box 90120, Durham, North Carolina 27708)

  • Robert M. Freund

    (Sloan School of Management, Massachusetts Institute of Technology, 50 Memorial Drive, Cambridge, Massachusetts 02142)

Abstract

We present a practical algorithm for computing the minimum-volume n -dimensional ellipsoid that must contain m given points a 1 ,…, a m ∈ ℝ n . This convex constrained problem arises in a variety of applied computational settings, particularly in data mining and robust statistics. Its structure makes it particularly amenable to solution by interior-point methods, and it has been the subject of much theoretical complexity analysis. Here we focus on computation. We present a combined interior-point and active-set method for solving this problem. Our computational results demonstrate that our method solves very large problem instances ( m = 30,000 and n = 30) to a high degree of accuracy in under 30 seconds on a personal computer.

Suggested Citation

  • Peng Sun & Robert M. Freund, 2004. "Computation of Minimum-Volume Covering Ellipsoids," Operations Research, INFORMS, vol. 52(5), pages 690-706, October.
  • Handle: RePEc:inm:oropre:v:52:y:2004:i:5:p:690-706
    DOI: 10.1287/opre.1040.0115
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1040.0115
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1040.0115?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Leonid G. Khachiyan, 1996. "Rounding of Polytopes in the Real Number Model of Computation," Mathematics of Operations Research, INFORMS, vol. 21(2), pages 307-320, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hlubinka, Daniel & Šiman, Miroslav, 2013. "On elliptical quantiles in the quantile regression setup," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 163-171.
    2. Alberto Seeger & José Vidal -Nuñez, 2017. "Measuring centrality and dispersion in directional datasets: the ellipsoidal cone covering approach," Journal of Global Optimization, Springer, vol. 68(2), pages 279-306, June.
    3. Efsun Kürüm & Gerhard-Wilhelm Weber & Cem Iyigun, 2018. "Early warning on stock market bubbles via methods of optimization, clustering and inverse problems," Annals of Operations Research, Springer, vol. 260(1), pages 293-320, January.
    4. Karim Abou-Moustafa & Frank P. Ferrie, 2018. "Local generalized quadratic distance metrics: application to the k-nearest neighbors classifier," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 341-363, June.
    5. Wei-jie Cong & Le Wang & Hui Sun, 2020. "Rank-two update algorithm versus Frank–Wolfe algorithm with away steps for the weighted Euclidean one-center problem," Computational Optimization and Applications, Springer, vol. 75(1), pages 237-262, January.
    6. A. Astorino & M. Gaudioso & W. Khalaf, 2014. "Edge detection by spherical separation," Computational Management Science, Springer, vol. 11(4), pages 517-530, October.
    7. Rosa, Samuel & Harman, Radoslav, 2022. "Computing minimum-volume enclosing ellipsoids for large datasets," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    8. Wei-jie Cong & Hong-wei Liu & Feng Ye & Shui-sheng Zhou, 2012. "Rank-two update algorithms for the minimum volume enclosing ellipsoid problem," Computational Optimization and Applications, Springer, vol. 51(1), pages 241-257, January.
    9. E. Hendrix & I. García & J. Plaza & A. Plaza, 2013. "On the minimum volume simplex enclosure problem for estimating a linear mixing model," Journal of Global Optimization, Springer, vol. 56(3), pages 957-970, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Selin Ahipaşaoğlu, 2015. "Fast algorithms for the minimum volume estimator," Journal of Global Optimization, Springer, vol. 62(2), pages 351-370, June.
    2. Zhong, Zhiming & Fan, Neng & Wu, Lei, 2023. "A hybrid robust-stochastic optimization approach for day-ahead scheduling of cascaded hydroelectric system in restructured electricity market," European Journal of Operational Research, Elsevier, vol. 306(2), pages 909-926.
    3. Pepper, Nick & Crespo, Luis & Montomoli, Francesco, 2022. "Adaptive learning for reliability analysis using Support Vector Machines," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    4. Deyi Liu & Volkan Cevher & Quoc Tran-Dinh, 2022. "A Newton Frank–Wolfe method for constrained self-concordant minimization," Journal of Global Optimization, Springer, vol. 83(2), pages 273-299, June.
    5. Wei-jie Cong & Hong-wei Liu & Feng Ye & Shui-sheng Zhou, 2012. "Rank-two update algorithms for the minimum volume enclosing ellipsoid problem," Computational Optimization and Applications, Springer, vol. 51(1), pages 241-257, January.
    6. Mohit Singh & Weijun Xie, 2020. "Approximation Algorithms for D -optimal Design," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1512-1534, November.
    7. P. Kumar & E. A. Yıldırım, 2008. "Computing Minimum-Volume Enclosing Axis-Aligned Ellipsoids," Journal of Optimization Theory and Applications, Springer, vol. 136(2), pages 211-228, February.
    8. Sanjay Mehrotra & Zhifeng Li, 2011. "Branching on hyperplane methods for mixed integer linear and convex programming using adjoint lattices," Journal of Global Optimization, Springer, vol. 49(4), pages 623-649, April.
    9. Pronzato, Luc, 2013. "A delimitation of the support of optimal designs for Kiefer’s ϕp-class of criteria," Statistics & Probability Letters, Elsevier, vol. 83(12), pages 2721-2728.
    10. Alexandre Belloni, 2008. "Norm-Induced Densities and Testing the Boundedness of a Convex Set," Mathematics of Operations Research, INFORMS, vol. 33(1), pages 235-256, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:52:y:2004:i:5:p:690-706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.