IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v177y2024i1d10.1007_s10584-023-03670-6.html
   My bibliography  Save this article

Impacts of anthropogenic forcing and internal variability on the rapid warming over the Tibetan Plateau

Author

Listed:
  • Zhaomin Ding

    (Chinese Academy of Meteorological Sciences)

  • Panmao Zhai

    (Chinese Academy of Meteorological Sciences)

  • Renguang Wu

    (Zhejiang University)

Abstract

This study investigates the roles of anthropogenic forcing and internal variability in the recent rapid warming over the Tibetan Plateau (TP) using a 30-member ensemble of CESM1 simulations. The ensemble-mean surface air temperature (SAT) over the TP shows a warming trend, but there is a remarkable diversity among individual members, suggesting a strong effect of internal variability. The ratio of the ensemble mean to the standard deviation of SAT trends among the ensemble is larger than 3 in summer and ranges from 0.5 to 1.5 in winter over most regions of TP. Our analysis reveals that internal atmospheric variability exerts crucial influences on SAT increase over the TP in both summer and winter by modulating surface heat fluxes involving cloud-radiation and snow-albedo feedbacks. A fingerprint pattern matching method illustrates that internal variability has augmented the observed TP warming in recent decades due to anthropogenic forcing. Internal variability is estimated to account for 25% of the observed warming trend in summer and approximately 50% in winter over the TP. The dynamical adjustment method reveals that the enhanced warming in the observations over northeastern TP in summer and over central TP in winter is partly dynamically induced. Further analysis indicates that SAT changes over the TP are closely tied to the multidecadal fluctuation of the Silk Road Pattern-like and the Scandinavian Pattern-like atmospheric circulation anomalies in summer and winter, respectively.

Suggested Citation

  • Zhaomin Ding & Panmao Zhai & Renguang Wu, 2024. "Impacts of anthropogenic forcing and internal variability on the rapid warming over the Tibetan Plateau," Climatic Change, Springer, vol. 177(1), pages 1-22, January.
  • Handle: RePEc:spr:climat:v:177:y:2024:i:1:d:10.1007_s10584-023-03670-6
    DOI: 10.1007/s10584-023-03670-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-023-03670-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-023-03670-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Veerabhadran Ramanathan & Muvva V. Ramana & Gregory Roberts & Dohyeong Kim & Craig Corrigan & Chul Chung & David Winker, 2007. "Warming trends in Asia amplified by brown cloud solar absorption," Nature, Nature, vol. 448(7153), pages 575-578, August.
    2. Kun Yang & Baisheng Ye & Degang Zhou & Bingyi Wu & Thomas Foken & Jun Qin & Zhaoye Zhou, 2011. "Response of hydrological cycle to recent climate changes in the Tibetan Plateau," Climatic Change, Springer, vol. 109(3), pages 517-534, December.
    3. Clara Deser & Reto Knutti & Susan Solomon & Adam S. Phillips, 2012. "Communication of the role of natural variability in future North American climate," Nature Climate Change, Nature, vol. 2(11), pages 775-779, November.
    4. Clara Deser & Reto Knutti & Susan Solomon & Adam S. Phillips, 2012. "Erratum: Communication of the role of natural variability in future North American climate," Nature Climate Change, Nature, vol. 2(12), pages 888-888, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christopher W. Callahan & Justin S. Mankin, 2022. "National attribution of historical climate damages," Climatic Change, Springer, vol. 172(3), pages 1-19, June.
    2. Wenhao Dong & Yi Ming & Yi Deng & Zhaoyi Shen, 2024. "Recent wetting trend over Taklamakan and Gobi Desert dominated by internal variability," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Lu Dong & L. Ruby Leung & Fengfei Song & Jian Lu, 2021. "Uncertainty in El Niño-like warming and California precipitation changes linked by the Interdecadal Pacific Oscillation," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Emanuele Bevacqua & Laura Suarez-Gutierrez & Aglaé Jézéquel & Flavio Lehner & Mathieu Vrac & Pascal Yiou & Jakob Zscheischler, 2023. "Advancing research on compound weather and climate events via large ensemble model simulations," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Chelsea L. Parker & Priscilla A. Mooney & Melinda A. Webster & Linette N. Boisvert, 2022. "The influence of recent and future climate change on spring Arctic cyclones," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Cha Zhao & François Brissette, 2022. "Impacts of large-scale oscillations on climate variability over North America," Climatic Change, Springer, vol. 173(1), pages 1-21, July.
    7. Kun Yang & Hui Lu & Siyu Yue & Guoqing Zhang & Yanbin Lei & Zhu La & Wei Wang, 2018. "Quantifying recent precipitation change and predicting lake expansion in the Inner Tibetan Plateau," Climatic Change, Springer, vol. 147(1), pages 149-163, March.
    8. Michael R. Grose & James S. Risbey & Penny H. Whetton, 2017. "Tracking regional temperature projections from the early 1990s in light of variations in regional warming, including ‘warming holes’," Climatic Change, Springer, vol. 140(2), pages 307-322, January.
    9. S. Camici & L. Brocca & T. Moramarco, 2017. "Accuracy versus variability of climate projections for flood assessment in central Italy," Climatic Change, Springer, vol. 141(2), pages 273-286, March.
    10. Zhiyuan Song & Ziyi Gao & Xianming Yang & Yuejing Ge, 2022. "Distinguishing the Impacts of Human Activities and Climate Change on the Livelihood Environment of Pastoralists in the Qinghai Lake Basin," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    11. Chenyao Yang & Helder Fraga & Wim Ieperen & Henrique Trindade & João A. Santos, 2019. "Effects of climate change and adaptation options on winter wheat yield under rainfed Mediterranean conditions in southern Portugal," Climatic Change, Springer, vol. 154(1), pages 159-178, May.
    12. Wang, Weiguang & Yu, Zhongbo & Zhang, Wei & Shao, Quanxi & Zhang, Yiwei & Luo, Yufeng & Jiao, Xiyun & Xu, Junzeng, 2014. "Responses of rice yield, irrigation water requirement and water use efficiency to climate change in China: Historical simulation and future projections," Agricultural Water Management, Elsevier, vol. 146(C), pages 249-261.
    13. Shan He & Tianling Qin & Fang Liu & Shanshan Liu & Biqiong Dong & Jianwei Wang & Hanjiang Nie, 2019. "Effects of Slope Ecological Restoration on Runoff and Its Response to Climate Change," IJERPH, MDPI, vol. 16(20), pages 1-22, October.
    14. Charles D. Kolstad & Frances C. Moore, 2020. "Estimating the Economic Impacts of Climate Change Using Weather Observations," Review of Environmental Economics and Policy, University of Chicago Press, vol. 14(1), pages 1-24.
    15. Shuai-Lei Yao & Jing-Jia Luo & Gang Huang, 2016. "Internal Variability-Generated Uncertainty in East Asian Climate Projections Estimated with 40 CCSM3 Ensembles," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-12, March.
    16. Yang, Zhikai & Liu, Pan & Cheng, Lei & Liu, Deli & Ming, Bo & Li, He & Xia, Qian, 2021. "Sizing utility-scale photovoltaic power generation for integration into a hydropower plant considering the effects of climate change: A case study in the Longyangxia of China," Energy, Elsevier, vol. 236(C).
    17. Stephan Harrison & Tim Mighall & David A. Stainforth & Philip Allen & Mark Macklin & Edward Anderson & Jasper Knight & Dmitri Mauquoy & David Passmore & Brice Rea & Matteo Spagnolo & Sarah Shannon, 2019. "Uncertainty in geomorphological responses to climate change," Climatic Change, Springer, vol. 156(1), pages 69-86, September.
    18. Kuifeng Luan & Zhaoxiang Cao & Song Hu & Zhenge Qiu & Zhenhua Wang & Wei Shen & Zhonghua Hong, 2023. "Aerosol Characterization of Northern China and Yangtze River Delta Based on Multi-Satellite Data: Spatiotemporal Variations and Policy Implications," Sustainability, MDPI, vol. 15(3), pages 1-24, January.
    19. Phong Nguyen Thanh & Thinh Le Van & Tuan Tran Minh & Tuyen Huynh Ngoc & Worapong Lohpaisankrit & Quoc Bao Pham & Alexandre S. Gagnon & Proloy Deb & Nhat Truong Pham & Duong Tran Anh & Vuong Nguyen Din, 2023. "Adapting to Climate-Change-Induced Drought Stress to Improve Water Management in Southeast Vietnam," Sustainability, MDPI, vol. 15(11), pages 1-27, June.
    20. Chao Chen & Yinglin Liang & Zhilong Chen & Changwu Zou & Zongbo Shi, 2024. "Black Carbon in Climate Studies: A Bibliometric Analysis of Research Trends and Topics," Sustainability, MDPI, vol. 16(20), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:177:y:2024:i:1:d:10.1007_s10584-023-03670-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.