IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v109y2011i3p517-534.html
   My bibliography  Save this article

Response of hydrological cycle to recent climate changes in the Tibetan Plateau

Author

Listed:
  • Kun Yang
  • Baisheng Ye
  • Degang Zhou
  • Bingyi Wu
  • Thomas Foken
  • Jun Qin
  • Zhaoye Zhou

Abstract

No abstract is available for this item.

Suggested Citation

  • Kun Yang & Baisheng Ye & Degang Zhou & Bingyi Wu & Thomas Foken & Jun Qin & Zhaoye Zhou, 2011. "Response of hydrological cycle to recent climate changes in the Tibetan Plateau," Climatic Change, Springer, vol. 109(3), pages 517-534, December.
  • Handle: RePEc:spr:climat:v:109:y:2011:i:3:p:517-534
    DOI: 10.1007/s10584-011-0099-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-011-0099-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-011-0099-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. W. Brutsaert & M. B. Parlange, 1998. "Hydrologic cycle explains the evaporation paradox," Nature, Nature, vol. 396(6706), pages 30-30, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuke Zhou & Junfu Fan & Xiaoying Wang, 2020. "Assessment of varying changes of vegetation and the response to climatic factors using GIMMS NDVI3g on the Tibetan Plateau," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-25, June.
    2. Xiaoyu Guo & Lei Wang & Lide Tian, 2023. "Spatial distributions and temporal variabilities of the recent Indian Summer Monsoon Northern Boundaries in Tibetan Plateau: analysis of outgoing longwave radiation dataset and precipitation isotopes," Climatic Change, Springer, vol. 176(4), pages 1-20, April.
    3. Yang, Zhikai & Liu, Pan & Cheng, Lei & Liu, Deli & Ming, Bo & Li, He & Xia, Qian, 2021. "Sizing utility-scale photovoltaic power generation for integration into a hydropower plant considering the effects of climate change: A case study in the Longyangxia of China," Energy, Elsevier, vol. 236(C).
    4. Kun Yang & Hui Lu & Siyu Yue & Guoqing Zhang & Yanbin Lei & Zhu La & Wei Wang, 2018. "Quantifying recent precipitation change and predicting lake expansion in the Inner Tibetan Plateau," Climatic Change, Springer, vol. 147(1), pages 149-163, March.
    5. Zhiyuan Song & Ziyi Gao & Xianming Yang & Yuejing Ge, 2022. "Distinguishing the Impacts of Human Activities and Climate Change on the Livelihood Environment of Pastoralists in the Qinghai Lake Basin," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    6. Shan He & Tianling Qin & Fang Liu & Shanshan Liu & Biqiong Dong & Jianwei Wang & Hanjiang Nie, 2019. "Effects of Slope Ecological Restoration on Runoff and Its Response to Climate Change," IJERPH, MDPI, vol. 16(20), pages 1-22, October.
    7. Zhaomin Ding & Panmao Zhai & Renguang Wu, 2024. "Impacts of anthropogenic forcing and internal variability on the rapid warming over the Tibetan Plateau," Climatic Change, Springer, vol. 177(1), pages 1-22, January.
    8. Yanbin Lei & Kun Yang & Bin Wang & Yongwei Sheng & Broxton Bird & Guoqing Zhang & Lide Tian, 2014. "Response of inland lake dynamics over the Tibetan Plateau to climate change," Climatic Change, Springer, vol. 125(2), pages 281-290, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monika Punia & Suman Nain & Amit Kumar & Bhupendra Singh & Amit Prakash & Krishan Kumar & V. Jain, 2015. "Analysis of temperature variability over north-west part of India for the period 1970–2000," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 935-952, January.
    2. Gianna Kitsara & Georgia Papaioannou & Athanasios Papathanasiou & Adrianos Retalis, 2013. "Dimming/brightening in Athens: Trends in Sunshine Duration, Cloud Cover and Reference Evapotranspiration," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(6), pages 1623-1633, April.
    3. Zhao, Ziyang & Wang, Hongrui & Wang, Cheng & Li, Wangcheng & Chen, Hao & Deng, Caiyun, 2020. "Changes in reference evapotranspiration over Northwest China from 1957 to 2018: Variation characteristics, cause analysis and relationships with atmospheric circulation," Agricultural Water Management, Elsevier, vol. 231(C).
    4. Yuliya Vystavna & Astrid Harjung & Lucilena R. Monteiro & Ioannis Matiatos & Leonard I. Wassenaar, 2021. "Stable isotopes in global lakes integrate catchment and climatic controls on evaporation," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    5. Zhuangzhi Sun & Chuanlong Han & Shouwei Gao & Zhaoxin Li & Mingxing Jing & Haipeng Yu & Zuankai Wang, 2022. "Achieving efficient power generation by designing bioinspired and multi-layered interfacial evaporator," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Elham Forootan, 2019. "Analysis of trends of hydrologic and climatic variables," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 14(3), pages 163-171.
    7. Zhang, Lei & Traore, Seydou & Cui, Yuanlai & Luo, Yufeng & Zhu, Ge & Liu, Bo & Fipps, Guy & Karthikeyan, R. & Singh, Vijay, 2019. "Assessment of spatiotemporal variability of reference evapotranspiration and controlling climate factors over decades in China using geospatial techniques," Agricultural Water Management, Elsevier, vol. 213(C), pages 499-511.
    8. Sergio M. Vicente‐Serrano & Tim R. McVicar & Diego G. Miralles & Yuting Yang & Miquel Tomas‐Burguera, 2020. "Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    9. Fu, Chong & Song, Xiaoyu & Li, Lanjun & Zhao, Xinkai & Meng, Pengfei & Wang, Long & Wei, Wanyin & Yang, Nan & Li, Huaiyou, 2023. "Combining the Generalized Complementary Relationship and the Modified Priestley-Taylor Equation to estimate and partition the evapotranspiration of typical plantations and grasslands in the Loess Plat," Agricultural Water Management, Elsevier, vol. 287(C).
    10. Amir AghaKouchak & Nasrin Nasrollahi, 2010. "Semi-parametric and Parametric Inference of Extreme Value Models for Rainfall Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(6), pages 1229-1249, April.
    11. Chenchen Ren & Guoyu Ren & Panfeng Zhang & Suonam Kealdrup Tysa & Yun Qin, 2021. "Urbanization Significantly Affects Pan-Evaporation Trends in Large River Basins of China Mainland," Land, MDPI, vol. 10(4), pages 1-11, April.
    12. Meng Li & Ronghao Chu & Abu Reza Md. Towfiqul Islam & Yuelin Jiang & Shuanghe Shen, 2020. "Attribution Analysis of Long-Term Trends of Aridity Index in the Huai River Basin, Eastern China," Sustainability, MDPI, vol. 12(5), pages 1-25, February.
    13. Sun, Juying & Wang, Genxu & Sun, Xiangyang & Hu, Zhaoyong & Lin, Shan & Wang, Fei & Yang, Yi, 2022. "New cognition on the response of reference evapotranspiration to climate change in China using an independent climatic driver system," Agricultural Water Management, Elsevier, vol. 262(C).
    14. Quanchong Su & Changlei Dai & Qingsong Zhang & Yang Zhou, 2023. "Analysis of Potential Evapotranspiration in Heilongjiang Province," Sustainability, MDPI, vol. 15(21), pages 1-15, October.
    15. Yongshan Jiang & Zhaofei Liu, 2022. "Simulation of Actual Evapotranspiration and Evaluation of Three Complementary Relationships in Three Parallel River Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5107-5126, October.
    16. Geng, Qingling & Zhao, Yongkun & Sun, Shikun & He, Xiaohui & Wang, Dong & Wu, Dingrong & Tian, Zhihui, 2023. "Spatio-temporal changes and its driving forces of irrigation water requirements for cotton in Xinjiang, China," Agricultural Water Management, Elsevier, vol. 280(C).
    17. Fu, Chong & Song, Xiaoyu & Li, Lanjun & Zhao, Xinkai & Meng, Pengfei & Wang, Long & Wei, Wanyin & Guo, Songle & Zhu, Deming & He, Xi & Yang, Dongdan & Li, Huaiyou, 2024. "Combining the FAO-56 method and the complementary principle to partition the evapotranspiration of typical plantations and grasslands in the Chinese Loess Plateau," Agricultural Water Management, Elsevier, vol. 295(C).
    18. Wang, Hong & Sun, Fubao & Liu, Fa & Wang, Tingting & Liu, Wenbin & Feng, Yao, 2023. "Reconstruction of the pan evaporation based on meteorological factors with machine learning method over China," Agricultural Water Management, Elsevier, vol. 287(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:109:y:2011:i:3:p:517-534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.