IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v172y2022i3d10.1007_s10584-022-03384-1.html
   My bibliography  Save this article

Evapotranspiration in hydrological models under rising CO2: a jump into the unknown

Author

Listed:
  • Thibault Lemaitre-Basset

    (Sorbonne Université, CNRS, EPHE
    Université Paris-Saclay, INRAE, HYCAR Research Unit)

  • Ludovic Oudin

    (Sorbonne Université, CNRS, EPHE)

  • Guillaume Thirel

    (Université Paris-Saclay, INRAE, HYCAR Research Unit)

Abstract

Many hydrological models use the concept of potential evapotranspiration (PE) to simulate actual evapotranspiration (AE). PE formulations often neglect the effect of carbon dioxide (CO2), which challenges their relevance in a context of climate change and rapid changes in CO2 atmospheric concentrations. In this work, we implement three options from the literature to take into account the effect of CO2 on stomatal resistance in the well-known Penman–Monteith PE formulation. We assess their impact on future runoff using the Budyko framework over France. On the basis of an ensemble of Euro-Cordex climate projections using the RCP 4.5 and RCP 8.5 scenarios, we show that taking into account CO2 in PE formulations largely reduces PE values but also limits projections of runoff decrease, especially under an emissive scenario, namely, the RCP 8.5, whereas the classic Penman–Monteith formulation yields decreasing runoff projections over most of France, taking into account CO2 yields more contrasting results. Runoff increase becomes likely in the north of France, which is an energy-limited area, with different levels of runoff response produced by the three tested formulations. The results highlight the sensitivity of hydrological projections to the processes represented in the PE formulation.

Suggested Citation

  • Thibault Lemaitre-Basset & Ludovic Oudin & Guillaume Thirel, 2022. "Evapotranspiration in hydrological models under rising CO2: a jump into the unknown," Climatic Change, Springer, vol. 172(3), pages 1-19, June.
  • Handle: RePEc:spr:climat:v:172:y:2022:i:3:d:10.1007_s10584-022-03384-1
    DOI: 10.1007/s10584-022-03384-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-022-03384-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-022-03384-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Philippe Roudier & Jafet C. M. Andersson & Chantal Donnelly & Luc Feyen & Wouter Greuell & Fulco Ludwig, 2016. "Projections of future floods and hydrological droughts in Europe under a +2°C global warming," Climatic Change, Springer, vol. 135(2), pages 341-355, March.
    2. Stockle, Claudio O. & Williams, Jimmy R. & Rosenberg, Norman J. & Jones, C. Allan, 1992. "A method for estimating the direct and climatic effects of rising atmospheric carbon dioxide on growth and yield of crops: Part I--Modification of the EPIC model for climate change analysis," Agricultural Systems, Elsevier, vol. 38(3), pages 225-238.
    3. Philippe Roudier & Jafet Andersson & Chantal Donnelly & Luc Feyen & Wouter Greuell & Fulco Ludwig, 2016. "Projections of future floods and hydrological droughts in Europe under a +2°C global warming," Climatic Change, Springer, vol. 135(2), pages 341-355, March.
    4. Chantal Donnelly & Wouter Greuell & Jafet Andersson & Dieter Gerten & Giovanna Pisacane & Philippe Roudier & Fulco Ludwig, 2017. "Erratum to: Impacts of climate change on European hydrology at 1.5, 2 and 3 degrees mean global warming above preindustrial level," Climatic Change, Springer, vol. 143(3), pages 535-535, August.
    5. N. Gedney & P. M. Cox & R. A. Betts & O. Boucher & C. Huntingford & P. A. Stott, 2006. "Detection of a direct carbon dioxide effect in continental river runoff records," Nature, Nature, vol. 439(7078), pages 835-838, February.
    6. Chantal Donnelly & Wouter Greuell & Jafet Andersson & Dieter Gerten & Giovanna Pisacane & Philippe Roudier & Fulco Ludwig, 2017. "Impacts of climate change on European hydrology at 1.5, 2 and 3 degrees mean global warming above preindustrial level," Climatic Change, Springer, vol. 143(1), pages 13-26, July.
    7. Yuting Yang & Michael L. Roderick & Shulei Zhang & Tim R. McVicar & Randall J. Donohue, 2019. "Hydrologic implications of vegetation response to elevated CO2 in climate projections," Nature Climate Change, Nature, vol. 9(1), pages 44-48, January.
    8. Malte Meinshausen & S. Smith & K. Calvin & J. Daniel & M. Kainuma & J-F. Lamarque & K. Matsumoto & S. Montzka & S. Raper & K. Riahi & A. Thomson & G. Velders & D.P. Vuuren, 2011. "The RCP greenhouse gas concentrations and their extensions from 1765 to 2300," Climatic Change, Springer, vol. 109(1), pages 213-241, November.
    9. P. C. D. Milly & K. A. Dunne, 2016. "Potential evapotranspiration and continental drying," Nature Climate Change, Nature, vol. 6(10), pages 946-949, October.
    10. Yiping Wu & Shuguang Liu & Omar Abdul-Aziz, 2012. "Hydrological effects of the increased CO 2 and climate change in the Upper Mississippi River Basin using a modified SWAT," Climatic Change, Springer, vol. 110(3), pages 977-1003, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Villani, Lorenzo & Castelli, Giulio & Yimer, Estifanos Addisu & Chawanda, Celray James & Nkwasa, Albert & Van Schaeybroeck, Bert & Penna, Daniele & van Griensven, Ann & Bresci, Elena, 2024. "Impacts of climate change and vegetation response on future aridity in a Mediterranean catchment," Agricultural Water Management, Elsevier, vol. 299(C).
    2. Villani, Lorenzo & Castelli, Giulio & Yimer, Estifanos Addisu & Nkwasa, Albert & Penna, Daniele & van Griensven, Ann & Bresci, Elena, 2024. "Exploring adaptive capacities in Mediterranean agriculture: Insights from Central Italy's Ombrone catchment," Agricultural Systems, Elsevier, vol. 216(C).
    3. Leonardo V. Noto & Giuseppe Cipolla & Antonio Francipane & Dario Pumo, 2023. "Climate Change in the Mediterranean Basin (Part I): Induced Alterations on Climate Forcings and Hydrological Processes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2287-2305, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao Zhang & Pierre Gentine & Xiangzhong Luo & Xu Lian & Yanlan Liu & Sha Zhou & Anna M. Michalak & Wu Sun & Joshua B. Fisher & Shilong Piao & Trevor F. Keenan, 2022. "Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Sergio M. Vicente‐Serrano & Tim R. McVicar & Diego G. Miralles & Yuting Yang & Miquel Tomas‐Burguera, 2020. "Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    3. Villani, Lorenzo & Castelli, Giulio & Yimer, Estifanos Addisu & Chawanda, Celray James & Nkwasa, Albert & Van Schaeybroeck, Bert & Penna, Daniele & van Griensven, Ann & Bresci, Elena, 2024. "Impacts of climate change and vegetation response on future aridity in a Mediterranean catchment," Agricultural Water Management, Elsevier, vol. 299(C).
    4. Alice Baronetti & Vincent Dubreuil & Antonello Provenzale & Simona Fratianni, 2022. "Future droughts in northern Italy: high-resolution projections using EURO-CORDEX and MED-CORDEX ensembles," Climatic Change, Springer, vol. 172(3), pages 1-22, June.
    5. Gianluigi Busico & Maria Margarita Ntona & Sílvia C. P. Carvalho & Olga Patrikaki & Konstantinos Voudouris & Nerantzis Kazakis, 2021. "Simulating Future Groundwater Recharge in Coastal and Inland Catchments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3617-3632, September.
    6. Yi Yang & Jianping Tang, 2023. "Downscaling and uncertainty analysis of future concurrent long-duration dry and hot events in China," Climatic Change, Springer, vol. 176(2), pages 1-25, February.
    7. Alison Kay, 2022. "Differences in hydrological impacts using regional climate model and nested convection-permitting model data," Climatic Change, Springer, vol. 173(1), pages 1-19, July.
    8. Joanna Nowak Da Costa & Beata Calka & Elzbieta Bielecka, 2021. "Urban Population Flood Impact Applied to a Warsaw Scenario," Resources, MDPI, vol. 10(6), pages 1-17, June.
    9. Ioannis Kougkoulos & Myriam Merad & Simon J. Cook & Ioannis Andredakis, 2021. "Floods in Provence-Alpes-Côte d'Azur and lessons for French flood risk governance," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1959-1980, November.
    10. Valentina Krysanova & Jamal Zaherpour & Iulii Didovets & Simon N. Gosling & Dieter Gerten & Naota Hanasaki & Hannes Müller Schmied & Yadu Pokhrel & Yusuke Satoh & Qiuhong Tang & Yoshihide Wada, 2020. "How evaluation of global hydrological models can help to improve credibility of river discharge projections under climate change," Climatic Change, Springer, vol. 163(3), pages 1353-1377, December.
    11. Muhammad Ishfaque & Qianwei Dai & Nuhman ul Haq & Khanzaib Jadoon & Syed Muzyan Shahzad & Hammad Tariq Janjuhah, 2022. "Use of Recurrent Neural Network with Long Short-Term Memory for Seepage Prediction at Tarbela Dam, KP, Pakistan," Energies, MDPI, vol. 15(9), pages 1-16, April.
    12. A. L. Kay & V. A. Bell & B. P. Guillod & R. G. Jones & A. C. Rudd, 2018. "National-scale analysis of low flow frequency: historical trends and potential future changes," Climatic Change, Springer, vol. 147(3), pages 585-599, April.
    13. Edwar Forero-Ortiz & Eduardo Martínez-Gomariz & Robert Monjo, 2020. "Climate Change Implications for Water Availability: A Case Study of Barcelona City," Sustainability, MDPI, vol. 12(5), pages 1-15, February.
    14. Alison C. Rudd & A. L. Kay & V. A. Bell, 2019. "National-scale analysis of future river flow and soil moisture droughts: potential changes in drought characteristics," Climatic Change, Springer, vol. 156(3), pages 323-340, October.
    15. Charlotte Poussin & Yaniss Guigoz & Elisa Palazzi & Silvia Terzago & Bruno Chatenoux & Gregory Giuliani, 2019. "Snow Cover Evolution in the Gran Paradiso National Park, Italian Alps, Using the Earth Observation Data Cube," Data, MDPI, vol. 4(4), pages 1-25, October.
    16. Si Xie & Tianshu Li & Ke Cao, 2023. "Analysis of the Impact of Carbon Emission Control on Urban Economic Indicators based on the Concept of Green Economy under Sustainable Development," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
    17. Nina Knittel & Martin W. Jury & Birgit Bednar-Friedl & Gabriel Bachner & Andrea K. Steiner, 2020. "A global analysis of heat-related labour productivity losses under climate change—implications for Germany’s foreign trade," Climatic Change, Springer, vol. 160(2), pages 251-269, May.
    18. Shan Jiang & Jian Zhou & Guojie Wang & Qigen Lin & Ziyan Chen & Yanjun Wang & Buda Su, 2022. "Cropland Exposed to Drought Is Overestimated without Considering the CO 2 Effect in the Arid Climatic Region of China," Land, MDPI, vol. 11(6), pages 1-21, June.
    19. Rejani Raghavan & Kondru Venkateswara Rao & Maheshwar Shivashankar Shirahatti & Duvvala Kalyana Srinivas & Kotha Sammi Reddy & Gajjala Ravindra Chary & Kodigal A. Gopinath & Mohammed Osman & Mathyam P, 2022. "Assessment of Spatial and Temporal Variations in Runoff Potential under Changing Climatic Scenarios in Northern Part of Karnataka in India Using Geospatial Techniques," Sustainability, MDPI, vol. 14(7), pages 1-21, March.
    20. Jan Gaska, 2023. "Losses from Fluvial Floods in Poland over the 21st Century – Estimation Using the Productivity Costs Method," Economics of Disasters and Climate Change, Springer, vol. 7(3), pages 357-383, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:172:y:2022:i:3:d:10.1007_s10584-022-03384-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.