IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v216y2024ics0308521x24000532.html
   My bibliography  Save this article

Exploring adaptive capacities in Mediterranean agriculture: Insights from Central Italy's Ombrone catchment

Author

Listed:
  • Villani, Lorenzo
  • Castelli, Giulio
  • Yimer, Estifanos Addisu
  • Nkwasa, Albert
  • Penna, Daniele
  • van Griensven, Ann
  • Bresci, Elena

Abstract

Climate change's profound implications for Mediterranean agriculture underscores the urgency of adaptation strategies. These strategies, whether incentivized or farmer-driven, are pivotal in mitigating crop yield losses and harnessing evolving climatic conditions. While the influence of agronomic adaptations on crop yields is well-explored, the implications for water footprint and water balance components remain largely unexplored.

Suggested Citation

  • Villani, Lorenzo & Castelli, Giulio & Yimer, Estifanos Addisu & Nkwasa, Albert & Penna, Daniele & van Griensven, Ann & Bresci, Elena, 2024. "Exploring adaptive capacities in Mediterranean agriculture: Insights from Central Italy's Ombrone catchment," Agricultural Systems, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:agisys:v:216:y:2024:i:c:s0308521x24000532
    DOI: 10.1016/j.agsy.2024.103903
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X24000532
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2024.103903?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sinnathamby, Sumathy & Douglas-Mankin, Kyle R. & Craige, Collin, 2017. "Field-scale calibration of crop-yield parameters in the Soil and Water Assessment Tool (SWAT)," Agricultural Water Management, Elsevier, vol. 180(PA), pages 61-69.
    2. Siad, Si Mokrane & Iacobellis, Vito & Zdruli, Pandi & Gioia, Andrea & Stavi, Ilan & Hoogenboom, Gerrit, 2019. "A review of coupled hydrologic and crop growth models," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    3. Heidi Webber & Frank Ewert & Jørgen E. Olesen & Christoph Müller & Stefan Fronzek & Alex C. Ruane & Maryse Bourgault & Pierre Martre & Behnam Ababaei & Marco Bindi & Roberto Ferrise & Robert Finger & , 2018. "Diverging importance of drought stress for maize and winter wheat in Europe," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    4. Nina Noreika & Tailin Li & Julie Winterova & Josef Krasa & Tomas Dostal, 2022. "The Effects of Agricultural Conservation Practices on the Small Water Cycle: From the Farm- to the Management-Scale," Land, MDPI, vol. 11(5), pages 1-16, May.
    5. Stockle, Claudio O. & Williams, Jimmy R. & Rosenberg, Norman J. & Jones, C. Allan, 1992. "A method for estimating the direct and climatic effects of rising atmospheric carbon dioxide on growth and yield of crops: Part I--Modification of the EPIC model for climate change analysis," Agricultural Systems, Elsevier, vol. 38(3), pages 225-238.
    6. Nina Noreika & Tailin Li & David Zumr & Josef Krasa & Tomas Dostal & Raghavan Srinivasan, 2020. "Farm-Scale Biofuel Crop Adoption and Its Effects on In-Basin Water Balance," Sustainability, MDPI, vol. 12(24), pages 1-15, December.
    7. Chen, Yong & Marek, Gary W. & Marek, Thomas H. & Porter, Dana O. & Brauer, David K. & Srinivasan, Raghavan, 2021. "Simulating the effects of agricultural production practices on water conservation and crop yields using an improved SWAT model in the Texas High Plains, USA," Agricultural Water Management, Elsevier, vol. 244(C).
    8. Brouziyne, Youssef & Abouabdillah, Aziz & Hirich, Abdelaziz & Bouabid, Rachid & Zaaboul, Rashyd & Benaabidate, Lahcen, 2018. "Modeling sustainable adaptation strategies toward a climate-smart agriculture in a Mediterranean watershed under projected climate change scenarios," Agricultural Systems, Elsevier, vol. 162(C), pages 154-163.
    9. Monteleone, Beatrice & Borzí, Iolanda & Bonaccorso, Brunella & Martina, Mario, 2022. "Developing stage-specific drought vulnerability curves for maize: The case study of the Po River basin," Agricultural Water Management, Elsevier, vol. 269(C).
    10. Nana, E. & Corbari, C. & Bocchiola, D., 2014. "A model for crop yield and water footprint assessment: Study of maize in the Po valley," Agricultural Systems, Elsevier, vol. 127(C), pages 139-149.
    11. Villani, Lorenzo & Castelli, Giulio & Piemontese, Luigi & Penna, Daniele & Bresci, Elena, 2022. "Drought risk assessment in Mediterranean agricultural watersheds: A case study in Central Italy," Agricultural Water Management, Elsevier, vol. 271(C).
    12. Ullrich, Antje & Volk, Martin, 2009. "Application of the Soil and Water Assessment Tool (SWAT) to predict the impact of alternative management practices on water quality and quantity," Agricultural Water Management, Elsevier, vol. 96(8), pages 1207-1217, August.
    13. Napoli, Marco & Cecchi, Stefano & Orlandini, Simone & Zanchi, Camillo A., 2014. "Determining potential rainwater harvesting sites using a continuous runoff potential accounting procedure and GIS techniques in central Italy," Agricultural Water Management, Elsevier, vol. 141(C), pages 55-65.
    14. Liebhard, Gunther & Klik, Andreas & Neugschwandtner, Reinhard W. & Nolz, Reinhard, 2022. "Effects of tillage systems on soil water distribution, crop development, and evaporation and transpiration rates of soybean," Agricultural Water Management, Elsevier, vol. 269(C).
    15. Marco Moriondo & Marco Bindi & Zbigniew Kundzewicz & M. Szwed & A. Chorynski & P. Matczak & M. Radziejewski & D. McEvoy & Anita Wreford, 2010. "Impact and adaptation opportunities for European agriculture in response to climatic change and variability," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(7), pages 657-679, October.
    16. Wang, Ruoyu & Bowling, Laura C. & Cherkauer, Keith A. & Cibin, Raj & Her, Younggu & Chaubey, Indrajeet, 2017. "Biophysical and hydrological effects of future climate change including trends in CO2, in the St. Joseph River watershed, Eastern Corn Belt," Agricultural Water Management, Elsevier, vol. 180(PB), pages 280-296.
    17. Čerkasova, Natalja & White, Michael & Arnold, Jeffrey & Bieger, Katrin & Allen, Peter & Gao, Jungang & Gambone, Marilyn & Meki, Manyowa & Kiniry, James & Gassman, Philip W., 2023. "Field scale SWAT+ modeling of corn and soybean yields for the contiguous United States: National Agroecosystem Model Development," Agricultural Systems, Elsevier, vol. 210(C).
    18. Bocchiola, D. & Nana, E. & Soncini, A., 2013. "Impact of climate change scenarios on crop yield and water footprint of maize in the Po valley of Italy," Agricultural Water Management, Elsevier, vol. 116(C), pages 50-61.
    19. Saadi, Sameh & Todorovic, Mladen & Tanasijevic, Lazar & Pereira, Luis S. & Pizzigalli, Claudia & Lionello, Piero, 2015. "Climate change and Mediterranean agriculture: Impacts on winter wheat and tomato crop evapotranspiration, irrigation requirements and yield," Agricultural Water Management, Elsevier, vol. 147(C), pages 103-115.
    20. Schipanski, Meagan E. & Barbercheck, Mary & Douglas, Margaret R. & Finney, Denise M. & Haider, Kristin & Kaye, Jason P. & Kemanian, Armen R. & Mortensen, David A. & Ryan, Matthew R. & Tooker, John & W, 2014. "A framework for evaluating ecosystem services provided by cover crops in agroecosystems," Agricultural Systems, Elsevier, vol. 125(C), pages 12-22.
    21. Eini, Mohammad Reza & Salmani, Haniyeh & Piniewski, Mikołaj, 2023. "Comparison of process-based and statistical approaches for simulation and projections of rainfed crop yields," Agricultural Water Management, Elsevier, vol. 277(C).
    22. Tenreiro, Tomás R. & García-Vila, Margarita & Gómez, José A. & Jimenez-Berni, José A. & Fereres, Elías, 2020. "Water modelling approaches and opportunities to simulate spatial water variations at crop field level," Agricultural Water Management, Elsevier, vol. 240(C).
    23. Giannini, Vittoria & Mula, Laura & Carta, Marcella & Patteri, Giacomo & Roggero, Pier Paolo, 2022. "Interplay of irrigation strategies and sowing dates on sunflower yield in semi-arid Mediterranean areas," Agricultural Water Management, Elsevier, vol. 260(C).
    24. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    25. Ayben Polat Bulut, 2023. "Determining the water footprint of sunflower in Turkey and creating digital maps for sustainable agricultural water management," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 11999-12010, October.
    26. Nina Noreika & Julie Winterová & Tailin Li & Josef Krása & Tomáš Dostál, 2021. "The Small Water Cycle in the Czech Landscape: How Has It Been Affected by Land Management Changes Over Time?," Sustainability, MDPI, vol. 13(24), pages 1-16, December.
    27. Napoli, Marco & Orlandini, Simone, 2015. "Evaluating the Arc-SWAT2009 in predicting runoff, sediment, and nutrient yields from a vineyard and an olive orchard in Central Italy," Agricultural Water Management, Elsevier, vol. 153(C), pages 51-62.
    28. Thibault Lemaitre-Basset & Ludovic Oudin & Guillaume Thirel, 2022. "Evapotranspiration in hydrological models under rising CO2: a jump into the unknown," Climatic Change, Springer, vol. 172(3), pages 1-19, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Villani, Lorenzo & Castelli, Giulio & Yimer, Estifanos Addisu & Chawanda, Celray James & Nkwasa, Albert & Van Schaeybroeck, Bert & Penna, Daniele & van Griensven, Ann & Bresci, Elena, 2024. "Impacts of climate change and vegetation response on future aridity in a Mediterranean catchment," Agricultural Water Management, Elsevier, vol. 299(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Villani, Lorenzo & Castelli, Giulio & Yimer, Estifanos Addisu & Chawanda, Celray James & Nkwasa, Albert & Van Schaeybroeck, Bert & Penna, Daniele & van Griensven, Ann & Bresci, Elena, 2024. "Impacts of climate change and vegetation response on future aridity in a Mediterranean catchment," Agricultural Water Management, Elsevier, vol. 299(C).
    2. Bocchiola, D., 2015. "Impact of potential climate change on crop yield and water footprint of rice in the Po valley of Italy," Agricultural Systems, Elsevier, vol. 139(C), pages 223-237.
    3. Marcinkowski, Paweł & Piniewski, Mikołaj, 2024. "Future changes in crop yield over Poland driven by climate change, increasing atmospheric CO2 and nitrogen stress," Agricultural Systems, Elsevier, vol. 213(C).
    4. Tailin Li & Massimiliano Schiavo & David Zumr, . "Seasonal variations of vegetative indices and their correlation with evapotranspiration and soil water storage in a small agricultural catchment," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 0.
    5. Bocchiola, D. & Brunetti, L. & Soncini, A. & Polinelli, F. & Gianinetto, M., 2019. "Impact of climate change on agricultural productivity and food security in the Himalayas: A case study in Nepal," Agricultural Systems, Elsevier, vol. 171(C), pages 113-125.
    6. Beatrice Monteleone & Iolanda Borzí & Brunella Bonaccorso & Mario Martina, 2023. "Quantifying crop vulnerability to weather-related extreme events and climate change through vulnerability curves," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 2761-2796, April.
    7. Palazzoli, I. & Maskey, S. & Uhlenbrook, S. & Nana, E. & Bocchiola, D., 2015. "Impact of prospective climate change on water resources and crop yields in the Indrawati basin, Nepal," Agricultural Systems, Elsevier, vol. 133(C), pages 143-157.
    8. Tailin Li & Massimiliano Schiavo & David Zumr, 2023. "Seasonal variations of vegetative indices and their correlation with evapotranspiration and soil water storage in a small agricultural catchment," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 18(4), pages 246-268.
    9. Nina Noreika & Tailin Li & Julie Winterova & Josef Krasa & Tomas Dostal, 2022. "The Effects of Agricultural Conservation Practices on the Small Water Cycle: From the Farm- to the Management-Scale," Land, MDPI, vol. 11(5), pages 1-16, May.
    10. Alvaro Alberto López-Lambraño & Luisa Martínez-Acosta & Ena Gámez-Balmaceda & Juan Pablo Medrano-Barboza & John Freddy Remolina López & Alvaro López-Ramos, 2020. "Supply and Demand Analysis of Water Resources. Case Study: Irrigation Water Demand in a Semi-Arid Zone in Mexico," Agriculture, MDPI, vol. 10(8), pages 1-20, August.
    11. Zhang, Yitong & Hao, Zengchao & Zhang, Yu, 2023. "Agricultural risk assessment of compound dry and hot events in China," Agricultural Water Management, Elsevier, vol. 277(C).
    12. Tassadit Kourat & Dalila Smadhi & Brahim Mouhouche & Nerdjes Gourari & M. G. Mostofa Amin & Christopher Robin Bryant, 2021. "Assessment of future climate change impact on rainfed wheat yield in the semi-arid Eastern High Plain of Algeria using a crop model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2175-2203, July.
    13. Qi, Zhi & Gao, Ya & Sun, Chen & Ramos, Tiago B. & Mu, Danning & Xun, Yihao & Huang, Guanhua & Xu, Xu, 2024. "Assessing water-nitrogen use, crop growth and economic benefits for maize in upper Yellow River basin: Feasibility analysis for border and drip irrigation," Agricultural Water Management, Elsevier, vol. 295(C).
    14. Cao, Xinchun & Zeng, Wen & Wu, Mengyang & Guo, Xiangping & Wang, Weiguang, 2020. "Hybrid analytical framework for regional agricultural water resource utilization and efficiency evaluation," Agricultural Water Management, Elsevier, vol. 231(C).
    15. Pignalosa, Antonio & Silvestri, Nicola & Pugliese, Francesco & Corniello, Alfonso & Gerundo, Carlo & Del Seppia, Nicola & Lucchesi, Massimo & Coscini, Nicola & De Paola, Francesco & Giugni, Maurizio, 2022. "Long-term simulations of Nature-Based Solutions effects on runoff and soil losses in a flat agricultural area within the catchment of Lake Massaciuccoli (Central Italy)," Agricultural Water Management, Elsevier, vol. 273(C).
    16. Yang, Chenyao & Fraga, Helder & van Ieperen, Wim & Santos, João A., 2020. "Assessing the impacts of recent-past climatic constraints on potential wheat yield and adaptation options under Mediterranean climate in southern Portugal," Agricultural Systems, Elsevier, vol. 182(C).
    17. Kang, Xiaoyu & Qi, Junyu & Li, Sheng & Meng, Fan-Rui, 2022. "A watershed-scale assessment of climate change impacts on crop yields in Atlantic Canada," Agricultural Water Management, Elsevier, vol. 269(C).
    18. Lekarkar, Katoria & Nkwasa, Albert & Villani, Lorenzo & van Griensven, Ann, 2024. "Localizing agricultural impacts of 21st century climate pathways in data scarce catchments: A case study of the Nyando catchment, Kenya," Agricultural Water Management, Elsevier, vol. 294(C).
    19. Zitouna-Chebbi, Rim & Jacob, Frédéric & Prévot, Laurent & Voltz, Marc, 2023. "Documenting evapotranspiration and surface energy fluxes over rainfed annual crops within a Mediterranean hilly agrosystem," Agricultural Water Management, Elsevier, vol. 277(C).
    20. Wang, Jianqing & Liu, Xiaoyu & Cheng, Kun & Zhang, Xuhui & Li, Lianqing & Pan, Genxing, 2018. "Winter wheat water requirement and utilization efficiency under simulated climate change conditions: A Penman-Monteith model evaluation," Agricultural Water Management, Elsevier, vol. 197(C), pages 100-109.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:216:y:2024:i:c:s0308521x24000532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.