IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v168y2021i3d10.1007_s10584-021-03250-6.html
   My bibliography  Save this article

Future intensity–duration–frequency curves of Edmonton under climate warming and increased convective available potential energy

Author

Listed:
  • Chun-Chao Kuo

    (Government of British Columbia
    University of Alberta)

  • Kai Ernn Gan

    (University of Pennsylvania
    McMaster University)

  • Yang Yang

    (University of Alberta)

  • Thian Yew Gan

    (University of Alberta)

Abstract

A regional climate model called WRF (Weather Research and Forecasting) was set up in a two-way, three-domain nested framework to simulate future May to August precipitation of central Alberta, Canada. WRF is forced with climate outputs from four Global Climate Models (GCMs) for the baseline period 1980–2005, and for 2041–2100 based on the Representative Concentration Pathways (RCP) 4.5 and 8.5 climate scenarios of the Intergovernmental Panel on Climate Change (IPCC). A quantile–quantile bias correction method and a regional frequency analysis were applied to acquire future grid-based IDF curves for the city of Edmonton. Future trends of air temperature and convective available potential energy (CAPE) are investigated. Future IDF curves are expected to have higher intensities because of projected higher air temperature and atmospheric water vapor, and projected increase in CAPE by 2071–2100. Our results likely mean that under the impact of climate change, the future risk of flooding in Edmonton would increase.

Suggested Citation

  • Chun-Chao Kuo & Kai Ernn Gan & Yang Yang & Thian Yew Gan, 2021. "Future intensity–duration–frequency curves of Edmonton under climate warming and increased convective available potential energy," Climatic Change, Springer, vol. 168(3), pages 1-23, October.
  • Handle: RePEc:spr:climat:v:168:y:2021:i:3:d:10.1007_s10584-021-03250-6
    DOI: 10.1007/s10584-021-03250-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-021-03250-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-021-03250-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jens H. Christensen & Ole B. Christensen, 2003. "Severe summertime flooding in Europe," Nature, Nature, vol. 421(6925), pages 805-806, February.
    2. Yongsheng Xu & Zong-Liang Yang, 2012. "A method to study the impact of climate change on variability of river flow: an example from the Guadalupe River in Texas," Climatic Change, Springer, vol. 113(3), pages 965-979, August.
    3. Richard H. Moss & Jae A. Edmonds & Kathy A. Hibbard & Martin R. Manning & Steven K. Rose & Detlef P. van Vuuren & Timothy R. Carter & Seita Emori & Mikiko Kainuma & Tom Kram & Gerald A. Meehl & John F, 2010. "The next generation of scenarios for climate change research and assessment," Nature, Nature, vol. 463(7282), pages 747-756, February.
    4. R. Bintanja & F. M. Selten, 2014. "Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat," Nature, Nature, vol. 509(7501), pages 479-482, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    2. Chateau, J. & Dellink, R. & Lanzi, E. & Magne, B., 2012. "Long-term economic growth and environmental pressure: reference scenarios for future global projections," Conference papers 332249, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    3. Gerald Nelson & Jessica Bogard & Keith Lividini & Joanne Arsenault & Malcolm Riley & Timothy B. Sulser & Daniel Mason-D’Croz & Brendan Power & David Gustafson & Mario Herrero & Keith Wiebe & Karen Coo, 2018. "Income growth and climate change effects on global nutrition security to mid-century," Nature Sustainability, Nature, vol. 1(12), pages 773-781, December.
    4. Meraj Sarwary & Senthilnathan Samiappan & Ghulam Dastgir Khan & Masaood Moahid, 2023. "Climate Change and Cereal Crops Productivity in Afghanistan: Evidence Based on Panel Regression Model," Sustainability, MDPI, vol. 15(14), pages 1-13, July.
    5. Kokou Amega & Yendoubé Laré & Ramchandra Bhandari & Yacouba Moumouni & Aklesso Y. G. Egbendewe & Windmanagda Sawadogo & Saidou Madougou, 2022. "Solar Energy Powered Decentralized Smart-Grid for Sustainable Energy Supply in Low-Income Countries: Analysis Considering Climate Change Influences in Togo," Energies, MDPI, vol. 15(24), pages 1-24, December.
    6. John Tzilivakis & D. Warner & A. Green & K. Lewis, 2015. "Adapting to climate change: assessing the vulnerability of ecosystem services in Europe in the context of rural development," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(4), pages 547-572, April.
    7. Syed Asif Ali Naqvi & Abdul Majeed Nadeem & Muhammad Amjed Iqbal & Sadia Ali & Asia Naseem, 2019. "Assessing the Vulnerabilities of Current and Future Production Systems in Punjab, Pakistan," Sustainability, MDPI, vol. 11(19), pages 1-13, September.
    8. Elmar Kriegler & Brian-C O'Neill & Stéphane Hallegatte & Tom Kram & Richard-H Moss & Robert Lempert & Thomas J Wilbanks, 2010. "Socio-economic Scenario Development for Climate Change Analysis," CIRED Working Papers hal-00866437, HAL.
    9. Mohamed Kefi & Binaya Kumar Mishra & Yoshifumi Masago & Kensuke Fukushi, 2020. "Analysis of flood damage and influencing factors in urban catchments: case studies in Manila, Philippines, and Jakarta, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2461-2487, December.
    10. Qun'ou Jiang & Yuwei Cheng & Qiutong Jin & Xiangzheng Deng & Yuanjing Qi, 2015. "Simulation of Forestland Dynamics in a Typical Deforestation and Afforestation Area under Climate Scenarios," Energies, MDPI, vol. 8(10), pages 1-26, September.
    11. Flavio R. Arroyo M. & Luis J. Miguel, 2019. "The Trends of the Energy Intensity and CO 2 Emissions Related to Final Energy Consumption in Ecuador: Scenarios of National and Worldwide Strategies," Sustainability, MDPI, vol. 12(1), pages 1-21, December.
    12. Lu, Yongquan & Liu, Guilin & Xian, Yuyang & Tang, Jiaqi & Zhong, Liming, 2024. "Climate change brings both opportunities and challenges to rural revitalization in China: Evidence from apple geographical indication predictions," Agricultural Systems, Elsevier, vol. 216(C).
    13. Ricky P. Laureta & Ric Ryan H. Regalado & Ermar B. De La Cruz, 2021. "Climate vulnerability scenario of the agricultural sector in the Bicol River Basin, Philippines," Climatic Change, Springer, vol. 168(1), pages 1-18, September.
    14. Bucchignani Edoardo & Mercogliano Paola & Montesarchio Myriam & Zollo Alessandra Lucia, 2017. "Numerical Simulation of the Period 1971–2100 over the Mediterranean Area with a Regional Model, Scenario SRES-A1B," Sustainability, MDPI, vol. 9(12), pages 1-17, November.
    15. Avri Eitan, 2021. "Promoting Renewable Energy to Cope with Climate Change—Policy Discourse in Israel," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
    16. John M. DeCicco, 2018. "Methodological Issues Regarding Biofuels and Carbon Uptake," Sustainability, MDPI, vol. 10(5), pages 1-15, May.
    17. Pedro Pérez-Cutillas & Pedro Baños Páez & Isabel Banos-González, 2020. "Variability of Water Balance under Climate Change Scenarios. Implications for Sustainability in the Rhône River Basin," Sustainability, MDPI, vol. 12(16), pages 1-22, August.
    18. Aikaterini Papapostolou & Charikleia Karakosta & Kalliopi-Anastasia Kourti & Haris Doukas & John Psarras, 2019. "Supporting Europe’s Energy Policy Towards a Decarbonised Energy System: A Comparative Assessment," Sustainability, MDPI, vol. 11(15), pages 1-26, July.
    19. Zbigniew Kundzewicz & Nicola Lugeri & Rutger Dankers & Yukiko Hirabayashi & Petra Döll & Iwona Pińskwar & Tomasz Dysarz & Stefan Hochrainer & Piotr Matczak, 2010. "Assessing river flood risk and adaptation in Europe—review of projections for the future," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(7), pages 641-656, October.
    20. H. Oğuz Çoban & Ömer K. Örücü & E. Seda Arslan, 2020. "MaxEnt Modeling for Predicting the Current and Future Potential Geographical Distribution of Quercus libani Olivier," Sustainability, MDPI, vol. 12(7), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:168:y:2021:i:3:d:10.1007_s10584-021-03250-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.