IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v120y2013i4p697-711.html
   My bibliography  Save this article

Coasts, water levels, and climate change: A Great Lakes perspective

Author

Listed:
  • Andrew Gronewold
  • Vincent Fortin
  • Brent Lofgren
  • Anne Clites
  • Craig Stow
  • Frank Quinn

Abstract

The North American Laurentian Great Lakes hold nearly 20 % of the earth’s unfrozen fresh surface water and have a length of coastline, and a coastal population, comparable to frequently-studied marine coasts. The surface water elevations of the Great Lakes, in particular, are an ideal metric for understanding impacts of climate change on large hydrologic systems, and for assessing adaption measures for absorbing those impacts. In light of the importance of the Great Lakes to the North American and global economies, the Great Lakes and the surrounding region also serve as an important benchmark for hydroclimate research, and offer an example of successful adaptive management under changing climate conditions. Here, we communicate some of the important lessons to be learned from the Great Lakes by examining how the coastline, water level, and water budget dynamics of the Great Lakes relate to other large coastal systems, along with implications for water resource management strategies and climate scenario-derived projections of future conditions. This improved understanding fills a critical gap in freshwater and marine global coastal research. Copyright U.S. Government 2013

Suggested Citation

  • Andrew Gronewold & Vincent Fortin & Brent Lofgren & Anne Clites & Craig Stow & Frank Quinn, 2013. "Coasts, water levels, and climate change: A Great Lakes perspective," Climatic Change, Springer, vol. 120(4), pages 697-711, October.
  • Handle: RePEc:spr:climat:v:120:y:2013:i:4:p:697-711
    DOI: 10.1007/s10584-013-0840-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-013-0840-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-013-0840-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Debra Willard & Christopher Bernhardt, 2011. "Impacts of past climate and sea level change on Everglades wetlands: placing a century of anthropogenic change into a late-Holocene context," Climatic Change, Springer, vol. 107(1), pages 59-80, July.
    2. P. C. D. Milly & K. A. Dunne & A. V. Vecchia, 2005. "Global pattern of trends in streamflow and water availability in a changing climate," Nature, Nature, vol. 438(7066), pages 347-350, November.
    3. Frank Millerd, 2011. "The potential impact of climate change on Great Lakes international shipping," Climatic Change, Springer, vol. 104(3), pages 629-652, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Assani & Raphaëlle Landry & Ouassila Azouaoui & Philippe Massicotte & Denis Gratton, 2016. "Comparison of the Characteristics (Frequency and Timing) of Drought and Wetness Indices of Annual Mean Water Levels in the Five North American Great Lakes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 359-373, January.
    2. Lacey A. Mason & Catherine M. Riseng & Andrew D. Gronewold & Edward S. Rutherford & Jia Wang & Anne Clites & Sigrid D. P. Smith & Peter B. McIntyre, 2016. "Fine-scale spatial variation in ice cover and surface temperature trends across the surface of the Laurentian Great Lakes," Climatic Change, Springer, vol. 138(1), pages 71-83, September.
    3. Elizabeth A. Mack & Ethan Theuerkauf & Erin Bunting, 2020. "Coastal Typology: An Analysis of the Spatiotemporal Relationship between Socioeconomic Development and Shoreline Change," Land, MDPI, vol. 9(7), pages 1-18, July.
    4. Ali A. Assani & Raphaëlle Landry & Ouassila Azouaoui & Philippe Massicotte & Denis Gratton, 2016. "Comparison of the Characteristics (Frequency and Timing) of Drought and Wetness Indices of Annual Mean Water Levels in the Five North American Great Lakes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 359-373, January.
    5. Norton, Richard K. & David, Nina P. & Buckman, Stephen & Koman, Patricia D., 2018. "Overlooking the coast: Limited local planning for coastal area management along Michigan’s Great Lakes," Land Use Policy, Elsevier, vol. 71(C), pages 183-203.
    6. Pennan Chinnasamy & Aashni Parikh, 2021. "Remote sensing-based assessment of Coastal Regulation Zones in India: a case study of Mumbai, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7931-7950, May.
    7. Edouard Mailhot & Biljana Music & Daniel F. Nadeau & Anne Frigon & Richard Turcotte, 2019. "Assessment of the Laurentian Great Lakes’ hydrological conditions in a changing climate," Climatic Change, Springer, vol. 157(2), pages 243-259, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Quiggin, 2010. "Agriculture and global climate stabilization: a public good analysis," Agricultural Economics, International Association of Agricultural Economists, vol. 41(s1), pages 121-132, November.
    2. Alvaro Calzadilla & Katrin Rehdanz & Richard Betts & Pete Falloon & Andy Wiltshire & Richard Tol, 2013. "Climate change impacts on global agriculture," Climatic Change, Springer, vol. 120(1), pages 357-374, September.
    3. Andrew John & Avril Horne & Rory Nathan & Michael Stewardson & J. Angus Webb & Jun Wang & N. LeRoy Poff, 2021. "Climate change and freshwater ecology: Hydrological and ecological methods of comparable complexity are needed to predict risk," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    4. I. García-Garizábal & J. Causapé & R. Abrahao & D. Merchan, 2014. "Impact of Climate Change on Mediterranean Irrigation Demand: Historical Dynamics of Climate and Future Projections," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1449-1462, March.
    5. Quiggin, John & Adamson, David & Chambers, Sarah & Schrobback, Peggy, 2009. "Climate change, mitigation and adaptation: the case of the Murray-Darling Basin in Australia," Risk and Sustainable Management Group Working Papers 149878, University of Queensland, School of Economics.
    6. Xin Huang & Lin Qiu, 2024. "Impacts of Climate Change and Land Use/Cover Change on Runoff in the Huangfuchuan River Basin," Land, MDPI, vol. 13(12), pages 1-23, November.
    7. Mohammad Hasan Mobarok & Wyatt Thompson & Theodoros Skevas, 2024. "Sensitivity of the United States crop basis and distribution network to precipitation," Agribusiness, John Wiley & Sons, Ltd., vol. 40(4), pages 908-925, October.
    8. Attavanich, Witsanu & McCarl, Bruce A. & Fuller, Stephen W. & Vedenov, Dmitry V. & Ahmedov, Zafarbek, 2011. "The Effect of Climate Change on Transportation Flows and Inland Waterways Due to Climate-Induced Shifts in Crop Production Patterns," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 109241, Agricultural and Applied Economics Association.
    9. Hsin-Yu Chen & Chia-Chi Huang & Hsin-Fu Yeh, 2021. "Quantifying the Relative Contribution of the Climate Change and Human Activity on Runoff in the Choshui River Alluvial Fan, Taiwan," Land, MDPI, vol. 10(8), pages 1-14, August.
    10. Moon-Hwan Lee & Deg-Hyo Bae, 2015. "Climate Change Impact Assessment on Green and Blue Water over Asian Monsoon Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2407-2427, May.
    11. Nicolas Misailidis Stríkis & Plácido Fabrício Silva Melo Buarque & Francisco William Cruz & Juan Pablo Bernal & Mathias Vuille & Ernesto Tejedor & Matheus Simões Santos & Marília Harumi Shimizu & Ange, 2024. "Modern anthropogenic drought in Central Brazil unprecedented during last 700 years," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Wenxin Xu & Jie Chen & Xunchang J. Zhang, 2022. "Scale Effects of the Monthly Streamflow Prediction Using a State-of-the-art Deep Learning Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3609-3625, August.
    13. Kukal, M.S. & Irmak, S., 2020. "Characterization of water use and productivity dynamics across four C3 and C4 row crops under optimal growth conditions," Agricultural Water Management, Elsevier, vol. 227(C).
    14. John Quiggin & David Adamson & Sarah Chambers & Peggy Schrobback, 2010. "Climate Change, Uncertainty, and Adaptation: The Case of Irrigated Agriculture in the Murray–Darling Basin in Australia," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 58(4), pages 531-554, December.
    15. Moldir Rakhimova & Tie Liu & Sanim Bissenbayeva & Yerbolat Mukanov & Khusen Sh. Gafforov & Zhuldyzay Bekpergenova & Aminjon Gulakhmadov, 2020. "Assessment of the Impacts of Climate Change and Human Activities on Runoff Using Climate Elasticity Method and General Circulation Model (GCM) in the Buqtyrma River Basin, Kazakhstan," Sustainability, MDPI, vol. 12(12), pages 1-22, June.
    16. Jinfei Hu & Guangju Zhao & Pengfei Li & Xingmin Mu, 2022. "Variations of pan evaporation and its attribution from 1961 to 2015 on the Loess Plateau, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1199-1217, March.
    17. J. Coleman & F. Sosa-Rodriguez & L. Mortsch & P. Deadman, 2016. "Assessing stakeholder impacts and adaptation to low water-levels: the Trent-Severn waterway," Climatic Change, Springer, vol. 134(1), pages 115-129, January.
    18. Asim Jahangir Khan & Manfred Koch & Adnan Ahmad Tahir, 2020. "Impacts of Climate Change on the Water Availability, Seasonality and Extremes in the Upper Indus Basin (UIB)," Sustainability, MDPI, vol. 12(4), pages 1-27, February.
    19. Xiaowen Zhuang & Yurui Fan & Yongping Li & Chuanbao Wu, 2023. "Evaluation Climate Change Impacts on Water Resources Over the Upper Reach of the Yellow River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2875-2889, May.
    20. Dayang Wang & Dagang Wang & Chongxun Mo & Yi Du, 2021. "Risk variation of reservoir regulation during flood season based on bivariate statistical approach under climate change: a case study in the Chengbihe reservoir, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 1585-1608, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:120:y:2013:i:4:p:697-711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.