IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v120y2023ics0305048323000609.html
   My bibliography  Save this article

Wasserstein distance‐based distributionally robust parallel‐machine scheduling

Author

Listed:
  • Yin, Yunqiang
  • Luo, Zunhao
  • Wang, Dujuan
  • Cheng, T.C.E.

Abstract

Recent research on distributionally robust (DR) machine scheduling has used a variety of approaches to describe the region of ambiguity of uncertain processing times by imposing constraints on the moments of the probability distributions. One approach that has been employed outside machine scheduling research is the use of statistical metrics to define a distance function between two probability distributions. Adopting such an approach, we study Wasserstein distance-based DR parallel-machine scheduling, where the ambiguity set is defined as a Wasserstein ball around an empirical distribution of uncertain processing times corresponding to finitely many samples. The objective is to minimize a DR objective that concerns the worst-case expected total completion time-related cost over all the distributions arising from the Wasserstein ambiguity set, subject to DR chance constraints on the machine service capacity. We show that the problem can be equivalently re-formulated as a mixed-integer linear program (MILP), which has a more simplified formulation when the bounded support set reduces to a left bounded one. To solve the resulting model, we develop a tailored branch-and-Benders-cut algorithm incorporating some enhancement strategies, including in-out Benders cut generation, aggregated sample group cut generation, and two-stage Benders cut generation, which significantly outperforms the CPLEX solver. Experiment results on comparing our model with the deterministic and stochastic counterparts and the model with first-order moment ambiguity set illustrate the benefits of considering distributional ambiguity and Wasserstein ambiguity set.

Suggested Citation

  • Yin, Yunqiang & Luo, Zunhao & Wang, Dujuan & Cheng, T.C.E., 2023. "Wasserstein distance‐based distributionally robust parallel‐machine scheduling," Omega, Elsevier, vol. 120(C).
  • Handle: RePEc:eee:jomega:v:120:y:2023:i:c:s0305048323000609
    DOI: 10.1016/j.omega.2023.102896
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048323000609
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2023.102896?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Herroelen, Willy & Leus, Roel, 2005. "Project scheduling under uncertainty: Survey and research potentials," European Journal of Operational Research, Elsevier, vol. 165(2), pages 289-306, September.
    2. Aytug, Haldun & Lawley, Mark A. & McKay, Kenneth & Mohan, Shantha & Uzsoy, Reha, 2005. "Executing production schedules in the face of uncertainties: A review and some future directions," European Journal of Operational Research, Elsevier, vol. 161(1), pages 86-110, February.
    3. Michael Pinedo, 1983. "Stochastic Scheduling with Release Dates and Due Dates," Operations Research, INFORMS, vol. 31(3), pages 559-572, June.
    4. Silva, Marco & Poss, Michael & Maculan, Nelson, 2020. "Solution algorithms for minimizing the total tardiness with budgeted processing time uncertainty," European Journal of Operational Research, Elsevier, vol. 283(1), pages 70-82.
    5. Chang, Zhiqi & Ding, Jian-Ya & Song, Shiji, 2019. "Distributionally robust scheduling on parallel machines under moment uncertainty," European Journal of Operational Research, Elsevier, vol. 272(3), pages 832-846.
    6. Ming Liu & Xin Liu & E. Zhang & Feng Chu & Chengbin Chu, 2019. "Scenario-based heuristic to two-stage stochastic program for the parallel machine ScheLoc problem," International Journal of Production Research, Taylor & Francis Journals, vol. 57(6), pages 1706-1723, March.
    7. Wang, Dujuan & Yin, Yunqiang & Cheng, T.C.E., 2018. "Parallel-machine rescheduling with job unavailability and rejection," Omega, Elsevier, vol. 81(C), pages 246-260.
    8. Yanıkoğlu, İhsan & Yavuz, Tonguc, 2022. "Branch-and-price approach for robust parallel machine scheduling with sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 301(3), pages 875-895.
    9. Martin Skutella & Maxim Sviridenko & Marc Uetz, 2016. "Unrelated Machine Scheduling with Stochastic Processing Times," Mathematics of Operations Research, INFORMS, vol. 41(3), pages 851-864, August.
    10. S. M. Johnson, 1954. "Optimal two‐ and three‐stage production schedules with setup times included," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 1(1), pages 61-68, March.
    11. Yin, Yunqiang & Cheng, T.C.E. & Wang, Du-Juan, 2016. "Rescheduling on identical parallel machines with machine disruptions to minimize total completion time," European Journal of Operational Research, Elsevier, vol. 252(3), pages 737-749.
    12. John Mittenthal & M. Raghavachari, 1993. "Stochastic Single Machine Scheduling with Quadratic Early-Tardy Penalties," Operations Research, INFORMS, vol. 41(4), pages 786-796, August.
    13. Yuli Zhang & Zuo-Jun Max Shen & Shiji Song, 2018. "Exact Algorithms for Distributionally β -Robust Machine Scheduling with Uncertain Processing Times," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 662-676, November.
    14. Mengying Fu & Ronald Askin & John Fowler & Muhong Zhang, 2015. "Stochastic optimization of product–machine qualification in a semiconductor back-end facility," IISE Transactions, Taylor & Francis Journals, vol. 47(7), pages 739-750, July.
    15. Yossiri Adulyasak & Jean-François Cordeau & Raf Jans, 2015. "Benders Decomposition for Production Routing Under Demand Uncertainty," Operations Research, INFORMS, vol. 63(4), pages 851-867, August.
    16. Richard L. Daniels & Panagiotis Kouvelis, 1995. "Robust Scheduling to Hedge Against Processing Time Uncertainty in Single-Stage Production," Management Science, INFORMS, vol. 41(2), pages 363-376, February.
    17. Wayne E. Smith, 1956. "Various optimizers for single‐stage production," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 3(1‐2), pages 59-66, March.
    18. Xiaoyun Xiong & Dujuan Wang & T.C. Edwin Cheng & Chin-Chia Wu & Yunqiang Yin, 2018. "Single-machine scheduling and common due date assignment with potential machine disruption," International Journal of Production Research, Taylor & Francis Journals, vol. 56(3), pages 1345-1360, February.
    19. Chang, Zhiqi & Song, Shiji & Zhang, Yuli & Ding, Jian-Ya & Zhang, Rui & Chiong, Raymond, 2017. "Distributionally robust single machine scheduling with risk aversion," European Journal of Operational Research, Elsevier, vol. 256(1), pages 261-274.
    20. Jyotirmoy Dalal & Halit Üster, 2018. "Combining Worst Case and Average Case Considerations in an Integrated Emergency Response Network Design Problem," Transportation Science, INFORMS, vol. 52(1), pages 171-188, January.
    21. Yang, Yongjian & Yin, Yunqiang & Wang, Dujuan & Ignatius, Joshua & Cheng, T.C.E. & Dhamotharan, Lalitha, 2023. "Distributionally robust multi-period location-allocation with multiple resources and capacity levels in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1042-1062.
    22. Novak, Antonin & Gnatowski, Andrzej & Sucha, Premysl, 2022. "Distributionally robust scheduling algorithms for total flow time minimization on parallel machines using norm regularizations," European Journal of Operational Research, Elsevier, vol. 302(2), pages 438-455.
    23. Wang, Zhuolin & You, Keyou & Song, Shiji & Zhang, Yuli, 2020. "Wasserstein distributionally robust shortest path problem," European Journal of Operational Research, Elsevier, vol. 284(1), pages 31-43.
    24. Wang, Haibo & Alidaee, Bahram, 2019. "Effective heuristic for large-scale unrelated parallel machines scheduling problems," Omega, Elsevier, vol. 83(C), pages 261-274.
    25. R. Montemanni & J. Barta & M. Mastrolilli & L. M. Gambardella, 2007. "The Robust Traveling Salesman Problem with Interval Data," Transportation Science, INFORMS, vol. 41(3), pages 366-381, August.
    26. Yin, Yunqiang & Wang, Yan & Cheng, T.C.E. & Liu, Wenqi & Li, Jinhai, 2017. "Parallel-machine scheduling of deteriorating jobs with potential machine disruptions," Omega, Elsevier, vol. 69(C), pages 17-28.
    27. Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
    28. Husseinzadeh Kashan, Ali & Ozturk, Onur, 2022. "Improved MILP formulation equipped with valid inequalities for scheduling a batch processing machine with non-identical job sizes," Omega, Elsevier, vol. 112(C).
    29. Yuanbo Li & Yong-Hong Kuo & Runjie Li & Houcai Shen & Lianmin Zhang, 2022. "A target-based distributionally robust model for the parallel machine scheduling problem," International Journal of Production Research, Taylor & Francis Journals, vol. 60(22), pages 6728-6749, November.
    30. Arrigo, Adriano & Ordoudis, Christos & Kazempour, Jalal & De Grève, Zacharie & Toubeau, Jean-François & Vallée, François, 2022. "Wasserstein distributionally robust chance-constrained optimization for energy and reserve dispatch: An exact and physically-bounded formulation," European Journal of Operational Research, Elsevier, vol. 296(1), pages 304-322.
    31. Birge, John R. & Louveaux, Francois V., 1988. "A multicut algorithm for two-stage stochastic linear programs," European Journal of Operational Research, Elsevier, vol. 34(3), pages 384-392, March.
    32. Ming Liu & Xin Liu & Feng Chu & Feifeng Zheng & Chengbin Chu, 2019. "Service-oriented robust parallel machine scheduling," International Journal of Production Research, Taylor & Francis Journals, vol. 57(12), pages 3814-3830, June.
    33. Pei, Zhi & Lu, Haimin & Jin, Qingwei & Zhang, Lianmin, 2022. "Target-based distributionally robust optimization for single machine scheduling," European Journal of Operational Research, Elsevier, vol. 299(2), pages 420-431.
    34. Grani A. Hanasusanto & Vladimir Roitch & Daniel Kuhn & Wolfram Wiesemann, 2017. "Ambiguous Joint Chance Constraints Under Mean and Dispersion Information," Operations Research, INFORMS, vol. 65(3), pages 751-767, June.
    35. Heuser, Patricia & Tauer, Björn, 2023. "Single-machine scheduling with product category-based learning and forgetting effects," Omega, Elsevier, vol. 115(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Haimin & Pei, Zhi, 2023. "Single machine scheduling with release dates: A distributionally robust approach," European Journal of Operational Research, Elsevier, vol. 308(1), pages 19-37.
    2. Guopeng Song & Roel Leus, 2022. "Parallel Machine Scheduling Under Uncertainty: Models and Exact Algorithms," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3059-3079, November.
    3. Miri Gilenson & Dvir Shabtay & Liron Yedidsion & Rohit Malshe, 2021. "Scheduling in multi-scenario environment with an agreeable condition on job processing times," Annals of Operations Research, Springer, vol. 307(1), pages 153-173, December.
    4. Yanıkoğlu, İhsan & Yavuz, Tonguc, 2022. "Branch-and-price approach for robust parallel machine scheduling with sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 301(3), pages 875-895.
    5. Pei, Zhi & Lu, Haimin & Jin, Qingwei & Zhang, Lianmin, 2022. "Target-based distributionally robust optimization for single machine scheduling," European Journal of Operational Research, Elsevier, vol. 299(2), pages 420-431.
    6. Wu, Xueqi & Che, Ada, 2019. "A memetic differential evolution algorithm for energy-efficient parallel machine scheduling," Omega, Elsevier, vol. 82(C), pages 155-165.
    7. Shabtay, Dvir & Gilenson, Miri, 2023. "A state-of-the-art survey on multi-scenario scheduling," European Journal of Operational Research, Elsevier, vol. 310(1), pages 3-23.
    8. Wenchang Luo & Taibo Luo & Randy Goebel & Guohui Lin, 2018. "Rescheduling due to machine disruption to minimize the total weighted completion time," Journal of Scheduling, Springer, vol. 21(5), pages 565-578, October.
    9. Adam Kasperski & Paweł Zieliński, 2019. "Risk-averse single machine scheduling: complexity and approximation," Journal of Scheduling, Springer, vol. 22(5), pages 567-580, October.
    10. Pavlo Glushko & Csaba I. Fábián & Achim Koberstein, 2022. "An L-shaped method with strengthened lift-and-project cuts," Computational Management Science, Springer, vol. 19(4), pages 539-565, October.
    11. Al-Hinai, Nasr & ElMekkawy, T.Y., 2011. "Robust and stable flexible job shop scheduling with random machine breakdowns using a hybrid genetic algorithm," International Journal of Production Economics, Elsevier, vol. 132(2), pages 279-291, August.
    12. Gruson, Matthieu & Cordeau, Jean-François & Jans, Raf, 2021. "Benders decomposition for a stochastic three-level lot sizing and replenishment problem with a distribution structure," European Journal of Operational Research, Elsevier, vol. 291(1), pages 206-217.
    13. Teodor Gabriel Crainic & Mike Hewitt & Francesca Maggioni & Walter Rei, 2021. "Partial Benders Decomposition: General Methodology and Application to Stochastic Network Design," Transportation Science, INFORMS, vol. 55(2), pages 414-435, March.
    14. Carlo Meloni & Marco Pranzo, 2020. "Expected shortfall for the makespan in activity networks under imperfect information," Flexible Services and Manufacturing Journal, Springer, vol. 32(3), pages 668-692, September.
    15. Denise D. Tönissen & Joachim J. Arts & Zuo-Jun Max Shen, 2021. "A column-and-constraint generation algorithm for two-stage stochastic programming problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 781-798, October.
    16. Mengshi Lu & Zuo‐Jun Max Shen, 2021. "A Review of Robust Operations Management under Model Uncertainty," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1927-1943, June.
    17. Jin, Zhongyi & Ng, Kam K.H. & Zhang, Chenliang & Liu, Wei & Zhang, Fangni & Xu, Gangyan, 2024. "A risk-averse distributionally robust optimisation approach for drone-supported relief facility location problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    18. Wang, Dujuan & Yin, Yunqiang & Cheng, T.C.E., 2018. "Parallel-machine rescheduling with job unavailability and rejection," Omega, Elsevier, vol. 81(C), pages 246-260.
    19. Xiong, Jian & Xing, Li-ning & Chen, Ying-wu, 2013. "Robust scheduling for multi-objective flexible job-shop problems with random machine breakdowns," International Journal of Production Economics, Elsevier, vol. 141(1), pages 112-126.
    20. Chang, Zhiqi & Ding, Jian-Ya & Song, Shiji, 2019. "Distributionally robust scheduling on parallel machines under moment uncertainty," European Journal of Operational Research, Elsevier, vol. 272(3), pages 832-846.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:120:y:2023:i:c:s0305048323000609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.