IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v9y2022i5d10.1007_s40745-022-00392-x.html
   My bibliography  Save this article

Effective Learning During COVID-19: Multilevel Covariates Matching and Propensity Score Matching

Author

Listed:
  • Siying Guo

    (Kean University)

  • Jianxuan Liu

    (Syracuse University)

  • Qiu Wang

    (Syracuse University)

Abstract

In large-scale observational data with a hierarchical structure, both clusters and interventions often have more than two levels. Popular methods in the binary treatment literature do not naturally extend to the hierarchical multilevel treatment case. For example, most K-12 and universities have moved to an unprecedented hybrid learning module during the COVID-19 pandemic where learning modes include hybrid and fully remote learning, while students were clustered within a class and school region. It is challenging to evaluate the effectiveness of the learning outcomes of the multilevel treatments in a hierarchically data structured. In this paper, we study a covariates matching method and develop a generalized propensity score matching method to reduce the bias of estimation in the intervention effect. We also propose simple algorithms to assess the covariates balance for each approach. We examine the finite sample performance of the methods via simulation studies and apply the proposed methods to analyze the effectiveness of learning modes during the COVID-19 pandemic.

Suggested Citation

  • Siying Guo & Jianxuan Liu & Qiu Wang, 2022. "Effective Learning During COVID-19: Multilevel Covariates Matching and Propensity Score Matching," Annals of Data Science, Springer, vol. 9(5), pages 967-982, October.
  • Handle: RePEc:spr:aodasc:v:9:y:2022:i:5:d:10.1007_s40745-022-00392-x
    DOI: 10.1007/s40745-022-00392-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-022-00392-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-022-00392-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2009. "Dealing with limited overlap in estimation of average treatment effects," Biometrika, Biometrika Trust, vol. 96(1), pages 187-199.
    2. Jianxuan Liu & Yanyuan Ma & Lan Wang, 2018. "An alternative robust estimator of average treatment effect in causal inference," Biometrics, The International Biometric Society, vol. 74(3), pages 910-923, September.
    3. Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
    4. Benjamin Alcott, 2017. "Does Teacher Encouragement Influence Students’ Educational Progress? A Propensity-Score Matching Analysis," Research in Higher Education, Springer;Association for Institutional Research, vol. 58(7), pages 773-804, November.
    5. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    6. Zhiqiang Tan, 2010. "Bounded, efficient and doubly robust estimation with inverse weighting," Biometrika, Biometrika Trust, vol. 97(3), pages 661-682.
    7. Murray, D.M. & Varnell, S.P. & Blitstein, J.L., 2004. "Design and Analysis of Group-Randomized Trials: A Review of Recent Methodological Developments," American Journal of Public Health, American Public Health Association, vol. 94(3), pages 423-432.
    8. Shu Yang & Guido W. Imbens & Zhanglin Cui & Douglas E. Faries & Zbigniew Kadziola, 2016. "Propensity score matching and subclassification in observational studies with multi‐level treatments," Biometrics, The International Biometric Society, vol. 72(4), pages 1055-1065, December.
    9. Derbachew Asfaw & Zeytu Gashaw, 2021. "Field Assignment, Field Choice and Preference Matching of Ethiopian High School Students," Annals of Data Science, Springer, vol. 8(2), pages 185-204, June.
    10. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2013. "The performance of estimators based on the propensity score," Journal of Econometrics, Elsevier, vol. 175(1), pages 1-21.
    11. James M. Tien, 2017. "Internet of Things, Real-Time Decision Making, and Artificial Intelligence," Annals of Data Science, Springer, vol. 4(2), pages 149-178, June.
    12. James J. Heckman & Hidehiko Ichimura & Petra Todd, 1998. "Matching As An Econometric Evaluation Estimator," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(2), pages 261-294.
    13. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, January.
    14. Ho, Daniel E. & Imai, Kosuke & King, Gary & Stuart, Elizabeth A., 2007. "Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference," Political Analysis, Cambridge University Press, vol. 15(3), pages 199-236, July.
    15. Sanjay Kumar, 2020. "Monitoring Novel Corona Virus (COVID-19) Infections in India by Cluster Analysis," Annals of Data Science, Springer, vol. 7(3), pages 417-425, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Lechner & Anthony Strittmatter, 2019. "Practical procedures to deal with common support problems in matching estimation," Econometric Reviews, Taylor & Francis Journals, vol. 38(2), pages 193-207, February.
    2. Difang Huang & Jiti Gao & Tatsushi Oka, 2022. "Semiparametric Single-Index Estimation for Average Treatment Effects," Papers 2206.08503, arXiv.org, revised Apr 2024.
    3. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    4. Martin Huber & Michael Lechner & Andreas Steinmayr, 2015. "Radius matching on the propensity score with bias adjustment: tuning parameters and finite sample behaviour," Empirical Economics, Springer, vol. 49(1), pages 1-31, August.
    5. Hugo Bodory & Lorenzo Camponovo & Martin Huber & Michael Lechner, 2020. "The Finite Sample Performance of Inference Methods for Propensity Score Matching and Weighting Estimators," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(1), pages 183-200, January.
    6. Gary King & Christopher Lucas & Richard A. Nielsen, 2017. "The Balance‐Sample Size Frontier in Matching Methods for Causal Inference," American Journal of Political Science, John Wiley & Sons, vol. 61(2), pages 473-489, April.
    7. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2013. "The performance of estimators based on the propensity score," Journal of Econometrics, Elsevier, vol. 175(1), pages 1-21.
    8. Zhexiao Lin & Fang Han, 2022. "On regression-adjusted imputation estimators of the average treatment effect," Papers 2212.05424, arXiv.org, revised Jan 2023.
    9. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2010. "How to Control for Many Covariates? Reliable Estimators Based on the Propensity Score," IZA Discussion Papers 5268, Institute of Labor Economics (IZA).
    10. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    11. Caloffi, Annalisa & Freo, Marzia & Ghinoi, Stefano & Mariani, Marco & Rossi, Federica, 2022. "Assessing the effects of a deliberate policy mix: The case of technology and innovation advisory services and innovation vouchers," Research Policy, Elsevier, vol. 51(6).
    12. Li Liang & Greene Tom, 2013. "A Weighting Analogue to Pair Matching in Propensity Score Analysis," The International Journal of Biostatistics, De Gruyter, vol. 9(2), pages 215-234, July.
    13. Frölich, Markus & Huber, Martin & Wiesenfarth, Manuel, 2017. "The finite sample performance of semi- and non-parametric estimators for treatment effects and policy evaluation," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 91-102.
    14. Jeffrey Smith & Arthur Sweetman, 2016. "Viewpoint: Estimating the causal effects of policies and programs," Canadian Journal of Economics, Canadian Economics Association, vol. 49(3), pages 871-905, August.
    15. Robert J. R. Elliott & Liza Jabbour & Liyun Zhang, 2016. "Firm productivity and importing: Evidence from Chinese manufacturing firms," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 49(3), pages 1086-1124, August.
    16. Goller, Daniel & Lechner, Michael & Moczall, Andreas & Wolff, Joachim, 2020. "Does the estimation of the propensity score by machine learning improve matching estimation? The case of Germany's programmes for long term unemployed," Labour Economics, Elsevier, vol. 65(C).
    17. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    18. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    19. Steven Lehrer & Gregory Kordas, 2013. "Matching using semiparametric propensity scores," Empirical Economics, Springer, vol. 44(1), pages 13-45, February.
    20. Tamara Bischof & Boris Kaiser, 2021. "Who cares when you close down? The effects of primary care practice closures on patients," Health Economics, John Wiley & Sons, Ltd., vol. 30(9), pages 2004-2025, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:9:y:2022:i:5:d:10.1007_s40745-022-00392-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.