IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v9y2022i3d10.1007_s40745-022-00370-3.html
   My bibliography  Save this article

Interval-Valued Intuitionistic Fuzzy Soft Rough Approximation Operators and Their Applications in Decision Making Problem

Author

Listed:
  • Anjan Mukherjee

    (Tripura University)

  • Abhik Mukherjee

    (ITS Dental College)

Abstract

It has been found that fuzzy sets, rough sets and soft sets are closely related concepts. Many complicated problems in economics, engineering, social sciences, medical science and many other fields involve uncertain data. These problems, which one comes in real life, cannot be solved using classical mathematical methods. There are several well-known theories to describe uncertainty, for instance, fuzzy set theory, rough set theory, and other mathematical tools. But all of these theories have their inherit difficulties as pointed out by D. Molodtsov. In 1999, D. Molodtsov introduced the concept of soft sets, which can be seen as a new mathematical tool for dealing with uncertainties. The concept of rough sets, proposed by Z. Pawlak as a framework for the construction of approximations of concepts. It is a formal tool for modeling and processing insufficient and incomplete information. Zhou and Wu first proposed the concept of intuitionistic fuzzy rough sets (IFrough sets). The aim of this paper is to introduce the concept of interval-valued intuitionistic fuzzy soft rough sets (IVIFS rough sets). We also investigate some properties of IVIFS rough approximation operators. Some basic operations and properties are studied. Lastly applications have been shown in decision making problems.

Suggested Citation

  • Anjan Mukherjee & Abhik Mukherjee, 2022. "Interval-Valued Intuitionistic Fuzzy Soft Rough Approximation Operators and Their Applications in Decision Making Problem," Annals of Data Science, Springer, vol. 9(3), pages 611-625, June.
  • Handle: RePEc:spr:aodasc:v:9:y:2022:i:3:d:10.1007_s40745-022-00370-3
    DOI: 10.1007/s40745-022-00370-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-022-00370-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-022-00370-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James M. Tien, 2017. "Internet of Things, Real-Time Decision Making, and Artificial Intelligence," Annals of Data Science, Springer, vol. 4(2), pages 149-178, June.
    2. Ashoke Kumar Bera & Dipak Kumar Jana & Debamalya Banerjee & Titas Nandy, 2021. "A Two-Phase Multi-criteria Fuzzy Group Decision Making Approach for Supplier Evaluation and Order Allocation Considering Multi-objective, Multi-product and Multi-period," Annals of Data Science, Springer, vol. 8(3), pages 577-601, September.
    3. Sanjay Kumar, 2020. "Monitoring Novel Corona Virus (COVID-19) Infections in India by Cluster Analysis," Annals of Data Science, Springer, vol. 7(3), pages 417-425, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rakhal Das & Anjan Mukherjee & Binod Chandra Tripathy, 2022. "Application of Neutrosophic Similarity Measures in Covid-19," Annals of Data Science, Springer, vol. 9(1), pages 55-70, February.
    2. Desmond Chekwube Bartholomew & Chrysogonus Chinagorom Nwaigwe & Ukamaka Cynthia Orumie & Godwin Onyeka Nwafor, 2024. "Intervention Analysis of COVID-19 Vaccination in Nigeria: The Naive Solution Versus Interrupted Time Series," Annals of Data Science, Springer, vol. 11(5), pages 1609-1634, October.
    3. Muhammed Navas Thorakkattle & Shazia Farhin & Athar Ali khan, 2022. "Forecasting the Trends of Covid-19 and Causal Impact of Vaccines Using Bayesian Structural time Series and ARIMA," Annals of Data Science, Springer, vol. 9(5), pages 1025-1047, October.
    4. Siying Guo & Jianxuan Liu & Qiu Wang, 2022. "Effective Learning During COVID-19: Multilevel Covariates Matching and Propensity Score Matching," Annals of Data Science, Springer, vol. 9(5), pages 967-982, October.
    5. Tousifur Rahman & Partha Jyoti Hazarika & M. Masoom Ali & Manash Pratim Barman, 2022. "Three-Inflated Poisson Distribution and its Application in Suicide Cases of India During Covid-19 Pandemic," Annals of Data Science, Springer, vol. 9(5), pages 1103-1127, October.
    6. Vrushabh Gada & Madhura Shegaonkar & Madhura Inamdar & Sharath Dinesh & Darshan Sapariya & Vedant Konde & Mahesh Warang & Ninad Mehendale, 2022. "Data Analysis of COVID-19 Hospital Records Using Contextual Patient Classification System," Annals of Data Science, Springer, vol. 9(5), pages 945-965, October.
    7. Nikhil J. Rathod & Manoj K. Chopra & Prem Kumar Chaurasiya & Umesh S. Vidhate & Abhishek Dasore, 2023. "Optimization on the Turning Process Parameters of SS 304 Using Taguchi and TOPSIS," Annals of Data Science, Springer, vol. 10(5), pages 1405-1419, October.
    8. Elphas Okango & Henry Mwambi, 2022. "Dictionary Based Global Twitter Sentiment Analysis of Coronavirus (COVID-19) Effects and Response," Annals of Data Science, Springer, vol. 9(1), pages 175-186, February.
    9. Vali Borimnejad & Sahar Dehyouri, 2022. "Content Analysis of the Economic Problems of Covid-19 Disease on Businesses: A Case Study of Tehran Province, Iran," Annals of Data Science, Springer, vol. 9(5), pages 1069-1083, October.
    10. Anurag Pathak & Manoj Kumar & Sanjay Kumar Singh & Umesh Singh, 2022. "Statistical Inferences: Based on Exponentiated Exponential Model to Assess Novel Corona Virus (COVID-19) Kerala Patient Data," Annals of Data Science, Springer, vol. 9(1), pages 101-119, February.
    11. Ehab M. Almetwally, 2022. "The Odd Weibull Inverse Topp–Leone Distribution with Applications to COVID-19 Data," Annals of Data Science, Springer, vol. 9(1), pages 121-140, February.
    12. Muhammad Ahsan-ul-Haq & Mukhtar Ahmed & Javeria Zafar & Pedro Luiz Ramos, 2022. "Modeling of COVID-19 Cases in Pakistan Using Lifetime Probability Distributions," Annals of Data Science, Springer, vol. 9(1), pages 141-152, February.
    13. Weijia Xu & Aihua Li & Lu Wei, 2022. "The Impact of COVID-19 on China’s Capital Market and Major Industry Sectors," Annals of Data Science, Springer, vol. 9(5), pages 983-1007, October.
    14. Md. Rezaul Karim & Sefat-E-Barket, 2024. "Bayesian Hierarchical Spatial Modeling of COVID-19 Cases in Bangladesh," Annals of Data Science, Springer, vol. 11(5), pages 1581-1607, October.
    15. S. Chakraborty, 2023. "Monitoring COVID-19 Cases and Vaccination in Indian States and Union Territories Using Unsupervised Machine Learning Algorithm," Annals of Data Science, Springer, vol. 10(4), pages 967-989, August.
    16. Satya Kumar Das, 2022. "A Fuzzy Multi Objective Inventory Model with Production Cost and Set-up-Cost Dependent on Population," Annals of Data Science, Springer, vol. 9(3), pages 627-643, June.
    17. Durgesh Samariya & Amit Thakkar, 2023. "A Comprehensive Survey of Anomaly Detection Algorithms," Annals of Data Science, Springer, vol. 10(3), pages 829-850, June.
    18. Asima Saleem, 2022. "Action for Action: Mad COVID-19, Falling Markets and Rising Volatility of SAARC Region," Annals of Data Science, Springer, vol. 9(1), pages 33-54, February.
    19. Aidin Zehtab-Salmasi & Ali-Reza Feizi-Derakhshi & Narjes Nikzad-Khasmakhi & Meysam Asgari-Chenaghlu & Saeideh Nabipour, 2023. "Multimodal Price Prediction," Annals of Data Science, Springer, vol. 10(3), pages 619-635, June.
    20. Heba Soltan Mohamed & M. Masoom Ali & Haitham M. Yousof, 2023. "The Lindley Gompertz Model for Estimating the Survival Rates: Properties and Applications in Insurance," Annals of Data Science, Springer, vol. 10(5), pages 1199-1216, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:9:y:2022:i:3:d:10.1007_s40745-022-00370-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.