IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v9y2022i3d10.1007_s40745-022-00405-9.html
   My bibliography  Save this article

A Fuzzy Multi Objective Inventory Model with Production Cost and Set-up-Cost Dependent on Population

Author

Listed:
  • Satya Kumar Das

    (Govt. General Degree College at Gopiballavpur-II)

Abstract

In this paper, I have developed a multi item production inventory model for the non-deteriorating items with constant demand rate under the limitation on set up cost. The production price and set-up price are the most vital problem within the inventory system of the marketplace in international. Here the production cost is dependent on the demand as well as populations. Set up cost is dependent on the average inventory level. Holding cost is the most challenging issue in the business world. In order to reduce the holding cost, the holding cost function has been considered as on the number of peoples. Due to uncertainty all the cost parameters are taken as the generalized triangular fuzzy number. Multi objective fuzzy inventory model has been solved by various techniques like Fuzzy programming technique with hyperbolic membership function, Fuzzy non-linear programming technique and Fuzzy additive goal programming technique. Numerical example is given to illustrate the inventory model. Sensitivity analysis and the graphical representations have been shown to illustrate the reality of the inventory model.

Suggested Citation

  • Satya Kumar Das, 2022. "A Fuzzy Multi Objective Inventory Model with Production Cost and Set-up-Cost Dependent on Population," Annals of Data Science, Springer, vol. 9(3), pages 627-643, June.
  • Handle: RePEc:spr:aodasc:v:9:y:2022:i:3:d:10.1007_s40745-022-00405-9
    DOI: 10.1007/s40745-022-00405-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-022-00405-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-022-00405-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sarkar, Biswajit & Saren, Sharmila & Wee, Hui-Ming, 2013. "An inventory model with variable demand, component cost and selling price for deteriorating items," Economic Modelling, Elsevier, vol. 30(C), pages 306-310.
    2. S.S. Mishra & Pradeep Kumar Singh, 2012. "Computational approach to an inventory model with ramp-type demand and linear deterioration," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 15(3), pages 337-357.
    3. Sanjay Singh & S.R. Singh & Seema Sharma, 2017. "A partially backlogged EPQ model with demand dependent production and non-instantaneous deterioration," International Journal of Mathematics in Operational Research, Inderscience Enterprises Ltd, vol. 10(2), pages 211-228.
    4. Ashoke Kumar Bera & Dipak Kumar Jana & Debamalya Banerjee & Titas Nandy, 2021. "A Two-Phase Multi-criteria Fuzzy Group Decision Making Approach for Supplier Evaluation and Order Allocation Considering Multi-objective, Multi-product and Multi-period," Annals of Data Science, Springer, vol. 8(3), pages 577-601, September.
    5. Sarkar, Biswajit & Sarkar, Sumon, 2013. "Variable deterioration and demand—An inventory model," Economic Modelling, Elsevier, vol. 31(C), pages 548-556.
    6. Biswajit Sarkar & Shib Sankar Sana & Kripasindhu Chaudhuri, 2010. "A finite replenishment model with increasing demand under inflation," International Journal of Mathematics in Operational Research, Inderscience Enterprises Ltd, vol. 2(3), pages 347-385.
    7. Totan Garai & Dipankar Chakraborty & Tapan Kumar Roy, 2019. "Multi-objective Inventory Model with Both Stock-Dependent Demand Rate and Holding Cost Rate Under Fuzzy Random Environment," Annals of Data Science, Springer, vol. 6(1), pages 61-81, March.
    8. James M. Tien, 2017. "Internet of Things, Real-Time Decision Making, and Artificial Intelligence," Annals of Data Science, Springer, vol. 4(2), pages 149-178, June.
    9. Khanra, S. & Mandal, Buddhadev & Sarkar, Biswajit, 2013. "An inventory model with time dependent demand and shortages under trade credit policy," Economic Modelling, Elsevier, vol. 35(C), pages 349-355.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Biswajit Sarkar & Sharmila Saren & Leopoldo Cárdenas-Barrón, 2015. "An inventory model with trade-credit policy and variable deterioration for fixed lifetime products," Annals of Operations Research, Springer, vol. 229(1), pages 677-702, June.
    2. Chandan Mahato & Gour Chandra Mahata, 2021. "Optimal inventory policies for deteriorating items with expiration date and dynamic demand under two-level trade credit," OPSEARCH, Springer;Operational Research Society of India, vol. 58(4), pages 994-1017, December.
    3. Janssen, Larissa & Claus, Thorsten & Sauer, Jürgen, 2016. "Literature review of deteriorating inventory models by key topics from 2012 to 2015," International Journal of Production Economics, Elsevier, vol. 182(C), pages 86-112.
    4. Anjan Mukherjee & Abhik Mukherjee, 2022. "Interval-Valued Intuitionistic Fuzzy Soft Rough Approximation Operators and Their Applications in Decision Making Problem," Annals of Data Science, Springer, vol. 9(3), pages 611-625, June.
    5. Prasenjit Pramanik & Manas Kumar Maiti & Manoranjan Maiti, 2018. "An appropriate business strategy for a sale item," OPSEARCH, Springer;Operational Research Society of India, vol. 55(1), pages 85-106, March.
    6. Nikhil J. Rathod & Manoj K. Chopra & Prem Kumar Chaurasiya & Umesh S. Vidhate & Abhishek Dasore, 2023. "Optimization on the Turning Process Parameters of SS 304 Using Taguchi and TOPSIS," Annals of Data Science, Springer, vol. 10(5), pages 1405-1419, October.
    7. B. C. Giri & S. Sharma, 2016. "Optimal ordering policy for an inventory system with linearly increasing demand and allowable shortages under two levels trade credit financing," Operational Research, Springer, vol. 16(1), pages 25-50, April.
    8. Heba Soltan Mohamed & M. Masoom Ali & Haitham M. Yousof, 2023. "The Lindley Gompertz Model for Estimating the Survival Rates: Properties and Applications in Insurance," Annals of Data Science, Springer, vol. 10(5), pages 1199-1216, October.
    9. Roberto Moro-Visconti & Salvador Cruz Rambaud & Joaquín López Pascual, 2023. "Artificial intelligence-driven scalability and its impact on the sustainability and valuation of traditional firms," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.
    10. Mansoureh Beheshti Nejad & Seyed Mahmoud Zanjirchi & Seyed Mojtaba Hosseini Bamakan & Negar Jalilian, 2024. "Blockchain Adoption in Operations Management: A Systematic Literature Review of 14 Years of Research," Annals of Data Science, Springer, vol. 11(4), pages 1361-1389, August.
    11. M. Sridharan, 2023. "Generalized Regression Neural Network Model Based Estimation of Global Solar Energy Using Meteorological Parameters," Annals of Data Science, Springer, vol. 10(4), pages 1107-1125, August.
    12. Amaal Elsayed Mubarak & Ehab Mohamed Almetwally, 2024. "Modelling and Forecasting of Covid-19 Using Periodical ARIMA Models," Annals of Data Science, Springer, vol. 11(4), pages 1483-1502, August.
    13. Xueyan Xu & Fusheng Yu & Runjun Wan, 2023. "A Determining Degree-Based Method for Classification Problems with Interval-Valued Attributes," Annals of Data Science, Springer, vol. 10(2), pages 393-413, April.
    14. Qinghua Zheng & Chutong Yang & Haijun Yang & Jianhe Zhou, 2020. "A Fast Exact Algorithm for Deployment of Sensor Nodes for Internet of Things," Information Systems Frontiers, Springer, vol. 22(4), pages 829-842, August.
    15. Prashant Singh & Prashant Verma & Nikhil Singh, 2022. "Offline Signature Verification: An Application of GLCM Features in Machine Learning," Annals of Data Science, Springer, vol. 9(6), pages 1309-1321, December.
    16. Luis A. San-José & Joaquín Sicilia & Manuel González-de-la-Rosa & Jaime Febles-Acosta, 2022. "Profit maximization in an inventory system with time-varying demand, partial backordering and discrete inventory cycle," Annals of Operations Research, Springer, vol. 316(2), pages 763-783, September.
    17. Shah Hussain & Muhammad Qasim Khan, 2023. "Student-Performulator: Predicting Students’ Academic Performance at Secondary and Intermediate Level Using Machine Learning," Annals of Data Science, Springer, vol. 10(3), pages 637-655, June.
    18. A. R. Sherwani & Q. M. Ali, 2023. "Parametric Classification using Fuzzy Approach for Handling the Problem of Mixed Pixels in Ground Truth Data for a Satellite Image," Annals of Data Science, Springer, vol. 10(6), pages 1459-1472, December.
    19. Hui Zheng & Peng LI & Jing HE, 2022. "A Novel Association Rule Mining Method for Streaming Temporal Data," Annals of Data Science, Springer, vol. 9(4), pages 863-883, August.
    20. Rakhal Das & Anjan Mukherjee & Binod Chandra Tripathy, 2022. "Application of Neutrosophic Similarity Measures in Covid-19," Annals of Data Science, Springer, vol. 9(1), pages 55-70, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:9:y:2022:i:3:d:10.1007_s40745-022-00405-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.