IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v10y2023i5d10.1007_s40745-021-00369-2.html
   My bibliography  Save this article

Optimization on the Turning Process Parameters of SS 304 Using Taguchi and TOPSIS

Author

Listed:
  • Nikhil J. Rathod

    (Sarvepalli Radhakrishnan University)

  • Manoj K. Chopra

    (Sarvepalli Radhakrishnan University)

  • Prem Kumar Chaurasiya

    (Bansal Institute of Science and Technology)

  • Umesh S. Vidhate

    (SMP Engineers and Electricals PVT. LTD)

  • Abhishek Dasore

    (Rajeev Gandhi Memorial College of Engineering and Technology)

Abstract

Turning is a basic machining technique where parameters may be optimised to improve machining performance. The Taguchi and TOPSIS methods were used to find the parameters of optimum process in turning SS 304 using coated carbide tools. Cutting speed, feed rate, and depth of cut are all considered in the operation. This improves tool life while lowering production time and surface roughness. TOPSI and an orthogonal array are used to investigate the effects of input parameters on output parameters. In this work, S/N ratios are utilized to create a decision matrix, which is then utilized to convert a problem with multiple criteria for solving into a single-criteria issue using the TOPSIS approach. The results demonstrated that the strategy proposed is suitable for resolving multi-criteria process parameter enhancements. The best combination of process specifics was found to be 350 m/min cutting speed, 0.12 mm/rev feed rate, and 0.40 mm cut depth.

Suggested Citation

  • Nikhil J. Rathod & Manoj K. Chopra & Prem Kumar Chaurasiya & Umesh S. Vidhate & Abhishek Dasore, 2023. "Optimization on the Turning Process Parameters of SS 304 Using Taguchi and TOPSIS," Annals of Data Science, Springer, vol. 10(5), pages 1405-1419, October.
  • Handle: RePEc:spr:aodasc:v:10:y:2023:i:5:d:10.1007_s40745-021-00369-2
    DOI: 10.1007/s40745-021-00369-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-021-00369-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-021-00369-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abdul Majeed, 2019. "Improving Time Complexity and Accuracy of the Machine Learning Algorithms Through Selection of Highly Weighted Top k Features from Complex Datasets," Annals of Data Science, Springer, vol. 6(4), pages 599-621, December.
    2. James M. Tien, 2017. "Internet of Things, Real-Time Decision Making, and Artificial Intelligence," Annals of Data Science, Springer, vol. 4(2), pages 149-178, June.
    3. Ashoke Kumar Bera & Dipak Kumar Jana & Debamalya Banerjee & Titas Nandy, 2021. "A Two-Phase Multi-criteria Fuzzy Group Decision Making Approach for Supplier Evaluation and Order Allocation Considering Multi-objective, Multi-product and Multi-period," Annals of Data Science, Springer, vol. 8(3), pages 577-601, September.
    4. André G. C. Pacheco & Renato A. Krohling, 2018. "Ranking of Classification Algorithms in Terms of Mean–Standard Deviation Using A-TOPSIS," Annals of Data Science, Springer, vol. 5(1), pages 93-110, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anjan Mukherjee & Abhik Mukherjee, 2022. "Interval-Valued Intuitionistic Fuzzy Soft Rough Approximation Operators and Their Applications in Decision Making Problem," Annals of Data Science, Springer, vol. 9(3), pages 611-625, June.
    2. Prashant Singh & Prashant Verma & Nikhil Singh, 2022. "Offline Signature Verification: An Application of GLCM Features in Machine Learning," Annals of Data Science, Springer, vol. 9(6), pages 1309-1321, December.
    3. Manoj Verma & Harish Kumar Ghritlahre & Surendra Bajpai, 2023. "A Case Study of Optimization of a Solar Power Plant Sizing and Placement in Madhya Pradesh, India Using Multi-Objective Genetic Algorithm," Annals of Data Science, Springer, vol. 10(4), pages 933-966, August.
    4. Satya Kumar Das, 2022. "A Fuzzy Multi Objective Inventory Model with Production Cost and Set-up-Cost Dependent on Population," Annals of Data Science, Springer, vol. 9(3), pages 627-643, June.
    5. Firuz Kamalov & Fadi Thabtah & Ho Hon Leung, 2023. "Feature Selection in Imbalanced Data," Annals of Data Science, Springer, vol. 10(6), pages 1527-1541, December.
    6. Mohamed Ibrahim & Khaoula Aidi & M. Masoom Ali & Haitham M. Yousof, 2023. "A Novel Test Statistic for Right Censored Validity under a new Chen extension with Applications in Reliability and Medicine," Annals of Data Science, Springer, vol. 10(5), pages 1285-1299, October.
    7. Durgesh Samariya & Amit Thakkar, 2023. "A Comprehensive Survey of Anomaly Detection Algorithms," Annals of Data Science, Springer, vol. 10(3), pages 829-850, June.
    8. Aidin Zehtab-Salmasi & Ali-Reza Feizi-Derakhshi & Narjes Nikzad-Khasmakhi & Meysam Asgari-Chenaghlu & Saeideh Nabipour, 2023. "Multimodal Price Prediction," Annals of Data Science, Springer, vol. 10(3), pages 619-635, June.
    9. Heba Soltan Mohamed & M. Masoom Ali & Haitham M. Yousof, 2023. "The Lindley Gompertz Model for Estimating the Survival Rates: Properties and Applications in Insurance," Annals of Data Science, Springer, vol. 10(5), pages 1199-1216, October.
    10. Patrick Osatohanmwen & Eferhonore Efe-Eyefia & Francis O. Oyegue & Joseph E. Osemwenkhae & Sunday M. Ogbonmwan & Benson A. Afere, 2022. "The Exponentiated Gumbel–Weibull {Logistic} Distribution with Application to Nigeria’s COVID-19 Infections Data," Annals of Data Science, Springer, vol. 9(5), pages 909-943, October.
    11. Petar Radanliev & David Roure & Rob Walton & Max Kleek & Omar Santos & La’Treall Maddox, 2022. "What Country, University, or Research Institute, Performed the Best on Covid-19 During the First Wave of the Pandemic?," Annals of Data Science, Springer, vol. 9(5), pages 1049-1067, October.
    12. Roberto Moro-Visconti & Salvador Cruz Rambaud & Joaquín López Pascual, 2023. "Artificial intelligence-driven scalability and its impact on the sustainability and valuation of traditional firms," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.
    13. Mansoureh Beheshti Nejad & Seyed Mahmoud Zanjirchi & Seyed Mojtaba Hosseini Bamakan & Negar Jalilian, 2024. "Blockchain Adoption in Operations Management: A Systematic Literature Review of 14 Years of Research," Annals of Data Science, Springer, vol. 11(4), pages 1361-1389, August.
    14. M. Sridharan, 2023. "Generalized Regression Neural Network Model Based Estimation of Global Solar Energy Using Meteorological Parameters," Annals of Data Science, Springer, vol. 10(4), pages 1107-1125, August.
    15. Guangrui Tang & Neng Fan, 2022. "A Survey of Solution Path Algorithms for Regression and Classification Models," Annals of Data Science, Springer, vol. 9(4), pages 749-789, August.
    16. Amaal Elsayed Mubarak & Ehab Mohamed Almetwally, 2024. "Modelling and Forecasting of Covid-19 Using Periodical ARIMA Models," Annals of Data Science, Springer, vol. 11(4), pages 1483-1502, August.
    17. Xueyan Xu & Fusheng Yu & Runjun Wan, 2023. "A Determining Degree-Based Method for Classification Problems with Interval-Valued Attributes," Annals of Data Science, Springer, vol. 10(2), pages 393-413, April.
    18. Qinghua Zheng & Chutong Yang & Haijun Yang & Jianhe Zhou, 2020. "A Fast Exact Algorithm for Deployment of Sensor Nodes for Internet of Things," Information Systems Frontiers, Springer, vol. 22(4), pages 829-842, August.
    19. Terence D. Agbeyegbe, 2023. "The Link Between Output Growth and Output Growth Volatility: Barbados," Annals of Data Science, Springer, vol. 10(3), pages 787-804, June.
    20. Ali Najafi & Araz Gholipour-Shilabin & Rahim Dehkharghani & Ali Mohammadpur-Fard & Meysam Asgari-Chenaghlu, 2023. "ComStreamClust: a Communicative Multi-Agent Approach to Text Clustering in Streaming Data," Annals of Data Science, Springer, vol. 10(6), pages 1583-1605, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:10:y:2023:i:5:d:10.1007_s40745-021-00369-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.