IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v9y2022i1d10.1007_s40745-021-00338-9.html
   My bibliography  Save this article

Modeling of COVID-19 Cases in Pakistan Using Lifetime Probability Distributions

Author

Listed:
  • Muhammad Ahsan-ul-Haq

    (University of the Punjab)

  • Mukhtar Ahmed

    (Minhaj University Lahore)

  • Javeria Zafar

    (University of the Punjab)

  • Pedro Luiz Ramos

    (University of São Paulo)

Abstract

The Coronavirus Disease (COVID-19) is a respiratory disease that caused a large number of deaths all over the world since its outbreak. The World Health Organization (WHO) has declared the outbreak a global pandemic. The understanding of the random process related to the behavior infection of COVID-19 is an important health and economic problem. In the proposed study, we analyze the frequency of daily confirmed cases of COVID-19 using different two-parameter lifetime probability distributions. We consider the data from the period of March 11, 2020, to July 25, 2020, of Pakistan. We consider nine lifetime probability distributions for the analysis purpose and the selection of best fit was carried out using log-likelihood, AIC, BIC, RMSE, and R2 goodness-of-fit measures. Results indicate that Weibull distribution provides generally the best-fit probability distribution.

Suggested Citation

  • Muhammad Ahsan-ul-Haq & Mukhtar Ahmed & Javeria Zafar & Pedro Luiz Ramos, 2022. "Modeling of COVID-19 Cases in Pakistan Using Lifetime Probability Distributions," Annals of Data Science, Springer, vol. 9(1), pages 141-152, February.
  • Handle: RePEc:spr:aodasc:v:9:y:2022:i:1:d:10.1007_s40745-021-00338-9
    DOI: 10.1007/s40745-021-00338-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-021-00338-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-021-00338-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yousaf, Muhammad & Zahir, Samiha & Riaz, Muhammad & Hussain, Sardar Muhammad & Shah, Kamal, 2020. "Statistical analysis of forecasting COVID-19 for upcoming month in Pakistan," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    2. Fotios Petropoulos & Spyros Makridakis, 2020. "Forecasting the novel coronavirus COVID-19," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-8, March.
    3. Marie Laure Delignette-Muller & Christophe Dutang, 2015. "fitdistrplus : An R Package for Fitting Distributions," Post-Print hal-01616147, HAL.
    4. Aman Khakharia & Vruddhi Shah & Sankalp Jain & Jash Shah & Amanshu Tiwari & Prathamesh Daphal & Mahesh Warang & Ninad Mehendale, 2021. "Outbreak Prediction of COVID-19 for Dense and Populated Countries Using Machine Learning," Annals of Data Science, Springer, vol. 8(1), pages 1-19, March.
    5. James M. Tien, 2017. "Internet of Things, Real-Time Decision Making, and Artificial Intelligence," Annals of Data Science, Springer, vol. 4(2), pages 149-178, June.
    6. Delignette-Muller, Marie Laure & Dutang, Christophe, 2015. "fitdistrplus: An R Package for Fitting Distributions," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 64(i04).
    7. Sanjay Kumar, 2020. "Monitoring Novel Corona Virus (COVID-19) Infections in India by Cluster Analysis," Annals of Data Science, Springer, vol. 7(3), pages 417-425, September.
    8. Pedro L Ramos & Diego C Nascimento & Paulo H Ferreira & Karina T Weber & Taiza E G Santos & Francisco Louzada, 2019. "Modeling traumatic brain injury lifetime data: Improved estimators for the Generalized Gamma distribution under small samples," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-22, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vali Borimnejad & Sahar Dehyouri, 2022. "Content Analysis of the Economic Problems of Covid-19 Disease on Businesses: A Case Study of Tehran Province, Iran," Annals of Data Science, Springer, vol. 9(5), pages 1069-1083, October.
    2. Mustapha Muhammad & Lixia Liu & Badamasi Abba & Isyaku Muhammad & Mouna Bouchane & Hexin Zhang & Sani Musa, 2023. "A New Extension of the Topp–Leone-Family of Models with Applications to Real Data," Annals of Data Science, Springer, vol. 10(1), pages 225-250, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ehab M. Almetwally, 2022. "The Odd Weibull Inverse Topp–Leone Distribution with Applications to COVID-19 Data," Annals of Data Science, Springer, vol. 9(1), pages 121-140, February.
    2. Combes, Catherine & Ng, Hon Keung Tony, 2022. "On parameter estimation for Amoroso family of distributions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 309-327.
    3. Elphas Okango & Henry Mwambi, 2022. "Dictionary Based Global Twitter Sentiment Analysis of Coronavirus (COVID-19) Effects and Response," Annals of Data Science, Springer, vol. 9(1), pages 175-186, February.
    4. Anurag Pathak & Manoj Kumar & Sanjay Kumar Singh & Umesh Singh, 2022. "Statistical Inferences: Based on Exponentiated Exponential Model to Assess Novel Corona Virus (COVID-19) Kerala Patient Data," Annals of Data Science, Springer, vol. 9(1), pages 101-119, February.
    5. Schulte, Benedikt & Sachs, Anna-Lena, 2020. "The price-setting newsvendor with Poisson demand," European Journal of Operational Research, Elsevier, vol. 283(1), pages 125-137.
    6. Avanzi, Benjamin & Taylor, Greg & Wang, Melantha & Wong, Bernard, 2021. "SynthETIC: An individual insurance claim simulator with feature control," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 296-308.
    7. K. G. Reddy & M. G. M. Khan, 2020. "stratifyR: An R Package for optimal stratification and sample allocation for univariate populations," Australian & New Zealand Journal of Statistics, Australian Statistical Publishing Association Inc., vol. 62(3), pages 383-405, September.
    8. Chen, Shang & He, Liang & Cao, Yinxuan & Wang, Runhong & Wu, Lianhai & Wang, Zhao & Zou, Yufeng & Siddique, Kadambot H.M. & Xiong, Wei & Liu, Manshuang & Feng, Hao & Yu, Qiang & Wang, Xiaoming & He, J, 2021. "Comparisons among four different upscaling strategies for cultivar genetic parameters in rainfed spring wheat phenology simulations with the DSSAT-CERES-Wheat model," Agricultural Water Management, Elsevier, vol. 258(C).
    9. Riva-Palacio, Alan & Leisen, Fabrizio, 2021. "Compound vectors of subordinators and their associated positive Lévy copulas," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    10. Rakhal Das & Anjan Mukherjee & Binod Chandra Tripathy, 2022. "Application of Neutrosophic Similarity Measures in Covid-19," Annals of Data Science, Springer, vol. 9(1), pages 55-70, February.
    11. Desmond Chekwube Bartholomew & Chrysogonus Chinagorom Nwaigwe & Ukamaka Cynthia Orumie & Godwin Onyeka Nwafor, 2024. "Intervention Analysis of COVID-19 Vaccination in Nigeria: The Naive Solution Versus Interrupted Time Series," Annals of Data Science, Springer, vol. 11(5), pages 1609-1634, October.
    12. Muhammed Navas Thorakkattle & Shazia Farhin & Athar Ali khan, 2022. "Forecasting the Trends of Covid-19 and Causal Impact of Vaccines Using Bayesian Structural time Series and ARIMA," Annals of Data Science, Springer, vol. 9(5), pages 1025-1047, October.
    13. Minji Lee & Sun Ju Chung & Youngjo Lee & Sera Park & Jun-Gun Kwon & Dai Jin Kim & Donghwan Lee & Jung-Seok Choi, 2020. "Investigation of Correlated Internet and Smartphone Addiction in Adolescents: Copula Regression Analysis," IJERPH, MDPI, vol. 17(16), pages 1-12, August.
    14. Siying Guo & Jianxuan Liu & Qiu Wang, 2022. "Effective Learning During COVID-19: Multilevel Covariates Matching and Propensity Score Matching," Annals of Data Science, Springer, vol. 9(5), pages 967-982, October.
    15. Veronesi, F. & Grassi, S. & Raubal, M., 2016. "Statistical learning approach for wind resource assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 836-850.
    16. Tousifur Rahman & Partha Jyoti Hazarika & M. Masoom Ali & Manash Pratim Barman, 2022. "Three-Inflated Poisson Distribution and its Application in Suicide Cases of India During Covid-19 Pandemic," Annals of Data Science, Springer, vol. 9(5), pages 1103-1127, October.
    17. Vrushabh Gada & Madhura Shegaonkar & Madhura Inamdar & Sharath Dinesh & Darshan Sapariya & Vedant Konde & Mahesh Warang & Ninad Mehendale, 2022. "Data Analysis of COVID-19 Hospital Records Using Contextual Patient Classification System," Annals of Data Science, Springer, vol. 9(5), pages 945-965, October.
    18. Phillip M. Gurman & Tom Ross & Andreas Kiermeier, 2018. "Quantitative Microbial Risk Assessment of Salmonellosis from the Consumption of Australian Pork: Minced Meat from Retail to Burgers Prepared and Consumed at Home," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2625-2645, December.
    19. Adam R. Martin & Rachel O. Mariani & Kimberley A. Cathline & Michael Duncan & Nicholas J. Paroshy & Gavin Robertson, 2022. "Soil Compaction Drives an Intra-Genotype Leaf Economics Spectrum in Wine Grapes," Agriculture, MDPI, vol. 12(10), pages 1-16, October.
    20. Héctor Nájera & David Gordon, 2023. "A Monte Carlo Study of Some Empirical Methods to Find the Optimal Poverty Line in Multidimensional Poverty Measurement," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 167(1), pages 391-419, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:9:y:2022:i:1:d:10.1007_s40745-021-00338-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.