IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v10y2023i5d10.1007_s40745-022-00429-1.html
   My bibliography  Save this article

Inference on a Multicomponent Stress-Strength Model Based on Unit-Burr III Distributions

Author

Listed:
  • Devendra Pratap Singh

    (Indian Institute of Technology Patna)

  • Mayank Kumar Jha

    (Indian Institute of Technology Patna
    Data Scientist, GEP Worldwide)

  • Yogesh Mani Tripathi

    (Indian Institute of Technology Patna)

  • Liang Wang

    (Yunnan Normal University)

Abstract

We make inference for a multicomponent stress-strength (MS) model under type-II censoring. It is assumed that lifetimes of strength and stress components follow unit Burr III distributions. Maximum likelihood estimator of MS parameter is obtained under a common shape parameter and in sequel approximate confidence intervals are constructed. Pivotal quantities based inference is also discussed. The case of unequal common parameters is considered as well and various inferences are derived. In addition, likelihood ratio tests are constructed to test the equivalence of parameters of interest. We conduct a simulation study to examine the behavior of proposed estimation procedures. A real data set is also analyzed from application viewpoint.

Suggested Citation

  • Devendra Pratap Singh & Mayank Kumar Jha & Yogesh Mani Tripathi & Liang Wang, 2023. "Inference on a Multicomponent Stress-Strength Model Based on Unit-Burr III Distributions," Annals of Data Science, Springer, vol. 10(5), pages 1329-1359, October.
  • Handle: RePEc:spr:aodasc:v:10:y:2023:i:5:d:10.1007_s40745-022-00429-1
    DOI: 10.1007/s40745-022-00429-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-022-00429-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-022-00429-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. Srinivasa Rao & Muhammad Aslam & Osama H. Arif, 2017. "Estimation of reliability in multicomponent stress–strength based on two parameter exponentiated Weibull Distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(15), pages 7495-7502, August.
    2. Kızılaslan, Fatih, 2017. "Classical and Bayesian estimation of reliability in a multicomponent stress–strength model based on the proportional reversed hazard rate mode," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 136(C), pages 36-62.
    3. Tanmay Kayal & Yogesh Mani Tripathi & Sanku Dey & Shuo-Jye Wu, 2020. "On estimating the reliability in a multicomponent stress-strength model based on Chen distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 49(10), pages 2429-2447, May.
    4. Abhimanyu Singh Yadav & Emrah Altun & Haitham M. Yousof, 2021. "Burr–Hatke Exponential Distribution: A Decreasing Failure Rate Model, Statistical Inference and Applications," Annals of Data Science, Springer, vol. 8(2), pages 241-260, June.
    5. Rao G. Srinivasa & Kantam R. R. L., 2010. "Acceptance Sampling Plans from Truncated Life Tests Based on the Log-Logistic Distributions for Percentiles," Stochastics and Quality Control, De Gruyter, vol. 25(2), pages 153-167, January.
    6. Subrata Chakraborty & Laba Handique & Rana Muhammad Usman, 2020. "A Simple Extension of Burr-III Distribution and Its Advantages over Existing Ones in Modelling Failure Time Data," Annals of Data Science, Springer, vol. 7(1), pages 17-31, March.
    7. Sanku Dey & Josmar Mazucheli & M. Z. Anis, 2017. "Estimation of reliability of multicomponent stress–strength for a Kumaraswamy distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(4), pages 1560-1572, February.
    8. James M. Tien, 2017. "Internet of Things, Real-Time Decision Making, and Artificial Intelligence," Annals of Data Science, Springer, vol. 4(2), pages 149-178, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang Wang & Huizhong Lin & Kambiz Ahmadi & Yuhlong Lio, 2021. "Estimation of Stress-Strength Reliability for Multicomponent System with Rayleigh Data," Energies, MDPI, vol. 14(23), pages 1-23, November.
    2. Yuhlong Lio & Tzong-Ru Tsai & Liang Wang & Ignacio Pascual Cecilio Tejada, 2022. "Inferences of the Multicomponent Stress–Strength Reliability for Burr XII Distributions," Mathematics, MDPI, vol. 10(14), pages 1-28, July.
    3. Hossein Pasha-Zanoosi, 2024. "Estimation of multicomponent stress-strength reliability based on a bivariate Topp-Leone distribution," OPSEARCH, Springer;Operational Research Society of India, vol. 61(2), pages 570-602, June.
    4. Shubham Saini & Renu Garg, 2022. "Reliability inference for multicomponent stress–strength model from Kumaraswamy-G family of distributions based on progressively first failure censored samples," Computational Statistics, Springer, vol. 37(4), pages 1795-1837, September.
    5. M. S. Kotb & M. Z. Raqab, 2021. "Estimation of reliability for multi-component stress–strength model based on modified Weibull distribution," Statistical Papers, Springer, vol. 62(6), pages 2763-2797, December.
    6. Heba Soltan Mohamed & M. Masoom Ali & Haitham M. Yousof, 2023. "The Lindley Gompertz Model for Estimating the Survival Rates: Properties and Applications in Insurance," Annals of Data Science, Springer, vol. 10(5), pages 1199-1216, October.
    7. Roberto Moro-Visconti & Salvador Cruz Rambaud & Joaquín López Pascual, 2023. "Artificial intelligence-driven scalability and its impact on the sustainability and valuation of traditional firms," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.
    8. Kundan Singh & Amulya Kumar Mahto & Yogesh Mani Tripathi & Liang Wang, 2024. "Estimation in a multicomponent stress-strength model for progressive censored lognormal distribution," Journal of Risk and Reliability, , vol. 238(3), pages 622-642, June.
    9. Mansoureh Beheshti Nejad & Seyed Mahmoud Zanjirchi & Seyed Mojtaba Hosseini Bamakan & Negar Jalilian, 2024. "Blockchain Adoption in Operations Management: A Systematic Literature Review of 14 Years of Research," Annals of Data Science, Springer, vol. 11(4), pages 1361-1389, August.
    10. M. Sridharan, 2023. "Generalized Regression Neural Network Model Based Estimation of Global Solar Energy Using Meteorological Parameters," Annals of Data Science, Springer, vol. 10(4), pages 1107-1125, August.
    11. Amaal Elsayed Mubarak & Ehab Mohamed Almetwally, 2024. "Modelling and Forecasting of Covid-19 Using Periodical ARIMA Models," Annals of Data Science, Springer, vol. 11(4), pages 1483-1502, August.
    12. Xueyan Xu & Fusheng Yu & Runjun Wan, 2023. "A Determining Degree-Based Method for Classification Problems with Interval-Valued Attributes," Annals of Data Science, Springer, vol. 10(2), pages 393-413, April.
    13. Qinghua Zheng & Chutong Yang & Haijun Yang & Jianhe Zhou, 2020. "A Fast Exact Algorithm for Deployment of Sensor Nodes for Internet of Things," Information Systems Frontiers, Springer, vol. 22(4), pages 829-842, August.
    14. Prashant Singh & Prashant Verma & Nikhil Singh, 2022. "Offline Signature Verification: An Application of GLCM Features in Machine Learning," Annals of Data Science, Springer, vol. 9(6), pages 1309-1321, December.
    15. Shah Hussain & Muhammad Qasim Khan, 2023. "Student-Performulator: Predicting Students’ Academic Performance at Secondary and Intermediate Level Using Machine Learning," Annals of Data Science, Springer, vol. 10(3), pages 637-655, June.
    16. A. R. Sherwani & Q. M. Ali, 2023. "Parametric Classification using Fuzzy Approach for Handling the Problem of Mixed Pixels in Ground Truth Data for a Satellite Image," Annals of Data Science, Springer, vol. 10(6), pages 1459-1472, December.
    17. Hui Zheng & Peng LI & Jing HE, 2022. "A Novel Association Rule Mining Method for Streaming Temporal Data," Annals of Data Science, Springer, vol. 9(4), pages 863-883, August.
    18. Rakhal Das & Anjan Mukherjee & Binod Chandra Tripathy, 2022. "Application of Neutrosophic Similarity Measures in Covid-19," Annals of Data Science, Springer, vol. 9(1), pages 55-70, February.
    19. Sankalp Loomba & Madhavi Dave & Harshal Arolkar & Sachin Sharma, 2024. "Sentiment Analysis using Dictionary-Based Lexicon Approach: Analysis on the Opinion of Indian Community for the Topic of Cryptocurrency," Annals of Data Science, Springer, vol. 11(6), pages 2019-2034, December.
    20. Desmond Chekwube Bartholomew & Chrysogonus Chinagorom Nwaigwe & Ukamaka Cynthia Orumie & Godwin Onyeka Nwafor, 2024. "Intervention Analysis of COVID-19 Vaccination in Nigeria: The Naive Solution Versus Interrupted Time Series," Annals of Data Science, Springer, vol. 11(5), pages 1609-1634, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:10:y:2023:i:5:d:10.1007_s40745-022-00429-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.