IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v49y2020i10p2429-2447.html
   My bibliography  Save this article

On estimating the reliability in a multicomponent stress-strength model based on Chen distribution

Author

Listed:
  • Tanmay Kayal
  • Yogesh Mani Tripathi
  • Sanku Dey
  • Shuo-Jye Wu

Abstract

In this article, we obtain point and interval estimates of multicomponent stress-strength reliability model of an s-out-of-j system using classical and Bayesian approaches by assuming both stress and strength variables follow a Chen distribution with a common shape parameter which may be known or unknown. The uniformly minimum variance unbiased estimator of reliability is obtained analytically when the common parameter is known. The behavior of proposed reliability estimates is studied using the estimated risks through Monte Carlo simulations and comments are obtained. Finally, a data set is analyzed for illustrative purposes.

Suggested Citation

  • Tanmay Kayal & Yogesh Mani Tripathi & Sanku Dey & Shuo-Jye Wu, 2020. "On estimating the reliability in a multicomponent stress-strength model based on Chen distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 49(10), pages 2429-2447, May.
  • Handle: RePEc:taf:lstaxx:v:49:y:2020:i:10:p:2429-2447
    DOI: 10.1080/03610926.2019.1576886
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2019.1576886
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2019.1576886?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shubham Saini & Renu Garg, 2022. "Reliability inference for multicomponent stress–strength model from Kumaraswamy-G family of distributions based on progressively first failure censored samples," Computational Statistics, Springer, vol. 37(4), pages 1795-1837, September.
    2. Hossein Pasha-Zanoosi, 2024. "Estimation of multicomponent stress-strength reliability based on a bivariate Topp-Leone distribution," OPSEARCH, Springer;Operational Research Society of India, vol. 61(2), pages 570-602, June.
    3. Kundan Singh & Amulya Kumar Mahto & Yogesh Mani Tripathi & Liang Wang, 2024. "Estimation in a multicomponent stress-strength model for progressive censored lognormal distribution," Journal of Risk and Reliability, , vol. 238(3), pages 622-642, June.
    4. Prashant Kumar Sonker & Mukesh Kumar & Agni Saroj, 2023. "Stress–strength reliability models on power-Muth distribution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 173-195, March.
    5. Devendra Pratap Singh & Mayank Kumar Jha & Yogesh Mani Tripathi & Liang Wang, 2023. "Inference on a Multicomponent Stress-Strength Model Based on Unit-Burr III Distributions," Annals of Data Science, Springer, vol. 10(5), pages 1329-1359, October.
    6. Liang Wang & Huizhong Lin & Kambiz Ahmadi & Yuhlong Lio, 2021. "Estimation of Stress-Strength Reliability for Multicomponent System with Rayleigh Data," Energies, MDPI, vol. 14(23), pages 1-23, November.
    7. Yuhlong Lio & Tzong-Ru Tsai & Liang Wang & Ignacio Pascual Cecilio Tejada, 2022. "Inferences of the Multicomponent Stress–Strength Reliability for Burr XII Distributions," Mathematics, MDPI, vol. 10(14), pages 1-28, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:49:y:2020:i:10:p:2429-2447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.