IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p7917-d687796.html
   My bibliography  Save this article

Estimation of Stress-Strength Reliability for Multicomponent System with Rayleigh Data

Author

Listed:
  • Liang Wang

    (School of Mathematics, Yunnan Normal University, Kunming 650500, China
    These authors contributed equally to this work.)

  • Huizhong Lin

    (School of Mathematics, Yunnan Normal University, Kunming 650500, China
    These authors contributed equally to this work.)

  • Kambiz Ahmadi

    (Department of Computer Science, Faculty of Mathematical Sciences, Shahrekord University, Shahrekord 115, Iran
    These authors contributed equally to this work.)

  • Yuhlong Lio

    (Department of Mathematical Sciences, University of South Dakota, Vermillion, SD 57069, USA
    These authors contributed equally to this work.)

Abstract

Inference is investigated for a multicomponent stress-strength reliability (MSR) under Type-II censoring when the latent failure times follow two-parameter Rayleigh distribution. With a context that the lifetimes of the strength and stress variables have common location parameters, maximum likelihood estimator of MSR along with the existence and uniqueness is established. The associated approximate confidence interval is provided via the asymptotic distribution theory and delta method. Meanwhile, alternative generalized pivotal quantities-based point and confidence interval estimators are also constructed for MSR. More generally, when the lifetimes of strength and stress variables follow Rayleigh distributions with unequal location parameters, likelihood and generalized pivotal-based estimators are provided for MSR as well. In addition, to compare the equivalence of different strength and stress parameters, a likelihood ratio test is provided. Finally, simulation studies and a real data example are presented for illustration.

Suggested Citation

  • Liang Wang & Huizhong Lin & Kambiz Ahmadi & Yuhlong Lio, 2021. "Estimation of Stress-Strength Reliability for Multicomponent System with Rayleigh Data," Energies, MDPI, vol. 14(23), pages 1-23, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7917-:d:687796
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/7917/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/7917/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fatih Kızılaslan, 2018. "Classical and Bayesian estimation of reliability in a multicomponent stress–strength model based on a general class of inverse exponentiated distributions," Statistical Papers, Springer, vol. 59(3), pages 1161-1192, September.
    2. Sanku Dey & Josmar Mazucheli & M. Z. Anis, 2017. "Estimation of reliability of multicomponent stress–strength for a Kumaraswamy distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(4), pages 1560-1572, February.
    3. Fatih Kızılaslan & Mustafa Nadar, 2018. "Estimation of reliability in a multicomponent stress–strength model based on a bivariate Kumaraswamy distribution," Statistical Papers, Springer, vol. 59(1), pages 307-340, March.
    4. Kızılaslan, Fatih, 2017. "Classical and Bayesian estimation of reliability in a multicomponent stress–strength model based on the proportional reversed hazard rate mode," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 136(C), pages 36-62.
    5. Tanmay Kayal & Yogesh Mani Tripathi & Sanku Dey & Shuo-Jye Wu, 2020. "On estimating the reliability in a multicomponent stress-strength model based on Chen distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 49(10), pages 2429-2447, May.
    6. G. Srinivasa Rao & Muhammad Aslam & Debasis Kundu, 2015. "Burr-XII Distribution Parametric Estimation and Estimation of Reliability of Multicomponent Stress-Strength," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(23), pages 4953-4961, December.
    7. Nahed A. Mokhlis & Emad J. Ibrahim & Dina M. Gharieb, 2017. "Stress−strength reliability with general form distributions," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(3), pages 1230-1246, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuhlong Lio & Tzong-Ru Tsai & Liang Wang & Ignacio Pascual Cecilio Tejada, 2022. "Inferences of the Multicomponent Stress–Strength Reliability for Burr XII Distributions," Mathematics, MDPI, vol. 10(14), pages 1-28, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuhlong Lio & Tzong-Ru Tsai & Liang Wang & Ignacio Pascual Cecilio Tejada, 2022. "Inferences of the Multicomponent Stress–Strength Reliability for Burr XII Distributions," Mathematics, MDPI, vol. 10(14), pages 1-28, July.
    2. M. S. Kotb & M. Z. Raqab, 2021. "Estimation of reliability for multi-component stress–strength model based on modified Weibull distribution," Statistical Papers, Springer, vol. 62(6), pages 2763-2797, December.
    3. Hossein Pasha-Zanoosi, 2024. "Estimation of multicomponent stress-strength reliability based on a bivariate Topp-Leone distribution," OPSEARCH, Springer;Operational Research Society of India, vol. 61(2), pages 570-602, June.
    4. Shubham Saini & Renu Garg, 2022. "Reliability inference for multicomponent stress–strength model from Kumaraswamy-G family of distributions based on progressively first failure censored samples," Computational Statistics, Springer, vol. 37(4), pages 1795-1837, September.
    5. Prashant Kumar Sonker & Mukesh Kumar & Agni Saroj, 2023. "Stress–strength reliability models on power-Muth distribution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 173-195, March.
    6. Devendra Pratap Singh & Mayank Kumar Jha & Yogesh Mani Tripathi & Liang Wang, 2023. "Inference on a Multicomponent Stress-Strength Model Based on Unit-Burr III Distributions," Annals of Data Science, Springer, vol. 10(5), pages 1329-1359, October.
    7. Kundan Singh & Amulya Kumar Mahto & Yogesh Mani Tripathi & Liang Wang, 2024. "Estimation in a multicomponent stress-strength model for progressive censored lognormal distribution," Journal of Risk and Reliability, , vol. 238(3), pages 622-642, June.
    8. Amulya Kumar Mahto & Yogesh Mani Tripathi, 2020. "Estimation of reliability in a multicomponent stress-strength model for inverted exponentiated Rayleigh distribution under progressive censoring," OPSEARCH, Springer;Operational Research Society of India, vol. 57(4), pages 1043-1069, December.
    9. Amal S. Hassan & Ibrahim M. Almanjahie & Amer Ibrahim Al-Omari & Loai Alzoubi & Heba Fathy Nagy, 2023. "Stress–Strength Modeling Using Median-Ranked Set Sampling: Estimation, Simulation, and Application," Mathematics, MDPI, vol. 11(2), pages 1-19, January.
    10. Farha Sultana & Yogesh Mani Tripathi & Shuo-Jye Wu & Tanmay Sen, 2022. "Inference for Kumaraswamy Distribution Based on Type I Progressive Hybrid Censoring," Annals of Data Science, Springer, vol. 9(6), pages 1283-1307, December.
    11. Akram Kohansal, 2019. "On estimation of reliability in a multicomponent stress-strength model for a Kumaraswamy distribution based on progressively censored sample," Statistical Papers, Springer, vol. 60(6), pages 2185-2224, December.
    12. Fatih Kızılaslan, 2018. "Classical and Bayesian estimation of reliability in a multicomponent stress–strength model based on a general class of inverse exponentiated distributions," Statistical Papers, Springer, vol. 59(3), pages 1161-1192, September.
    13. Fulment Arnold K. & Josephat Peter K. & Srinivasa Rao Gadde, 2017. "Estimation of Reliability in Multicomponent Stress-Strength Based on Dagum Distribution," Stochastics and Quality Control, De Gruyter, vol. 32(2), pages 77-85, December.
    14. Hassan S. Bakouch & Tassaddaq Hussain & Marina Tošić & Vladica S. Stojanović & Najla Qarmalah, 2023. "Unit Exponential Probability Distribution: Characterization and Applications in Environmental and Engineering Data Modeling," Mathematics, MDPI, vol. 11(19), pages 1-22, October.
    15. Lauren Sauer & Yuhlong Lio & Tzong-Ru Tsai, 2020. "Reliability Inference for the Multicomponent System Based on Progressively Type II Censored Samples from Generalized Pareto Distributions," Mathematics, MDPI, vol. 8(7), pages 1-14, July.
    16. Akram Kohansal & Shirin Shoaee, 2021. "Bayesian and classical estimation of reliability in a multicomponent stress-strength model under adaptive hybrid progressive censored data," Statistical Papers, Springer, vol. 62(1), pages 309-359, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7917-:d:687796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.