Author
Listed:
- S. Divyashree
(Vellore Institute of Technology)
- Christy Jackson Joshua
(Vellore Institute of Technology)
- Abdul Quadir Md
(Vellore Institute of Technology)
- Senthilkumar Mohan
(Vellore Institute of Technology)
- A. Sheik Abdullah
(Vellore Institute of Technology)
- Ummul Hanan Mohamad
(Universiti Kebangsaan Malaysia)
- Nisreen Innab
(AlMaarefa University)
- Ali Ahmadian
(Mediterranea University of Reggio Calabria
Istanbul Okan University)
Abstract
This paper introduces AlphaVision, an innovative decision support model designed for stock price prediction by seamlessly integrating real-time news updates and Return on Investment (ROI) values, utilizing various machine learning and deep learning approaches. The research investigates the application of these techniques to enhance the effectiveness of stock trading and investment decisions by accurately anticipating stock prices and providing valuable insights to investors and businesses. The study begins by analyzing the complexities and challenges of stock market analysis, considering factors like political, macroeconomic, and legal issues that contribute to market volatility. To address these challenges, we proposed the methodology called AlphaVision, which incorporates various machine learning algorithms, including Decision Trees, Random Forest, Naïve Bayes, Boosting, K-Nearest Neighbors, and Support Vector Machine, alongside deep learning models such as Multi-layer Perceptron (MLP), Artificial Neural Networks, and Recurrent Neural Networks. The effectiveness of each model is evaluated based on their accuracy in predicting stock prices. Experimental results revealed that the MLP model achieved the highest accuracy of approximately 92%, outperforming other deep learning models. The Random Forest algorithm also demonstrated promising results with an accuracy of around 84.6%. These findings indicate the potential of machine learning and deep learning techniques in improving stock market analysis and prediction. The AlphaVision methodology presented in this research empowers investors and businesses with valuable tools to make informed investment decisions and navigate the complexities of the stock market. By accurately forecasting stock prices based on news updates and ROI values, the model contributes to better financial management and business sustainability. The integration of machine learning and deep learning approaches offers a promising solution for enhancing stock market analysis and prediction. Future research will focus on extracting more relevant financial features to further improve the model’s accuracy. By advancing decision support models for stock price prediction, researchers and practitioners can foster better investment strategies and foster economic growth. The proposed model holds potential to revolutionize stock trading and investment practices, enabling more informed and profitable decision-making in the financial sector.
Suggested Citation
S. Divyashree & Christy Jackson Joshua & Abdul Quadir Md & Senthilkumar Mohan & A. Sheik Abdullah & Ummul Hanan Mohamad & Nisreen Innab & Ali Ahmadian, 2024.
"Enabling business sustainability for stock market data using machine learning and deep learning approaches,"
Annals of Operations Research, Springer, vol. 342(1), pages 287-322, November.
Handle:
RePEc:spr:annopr:v:342:y:2024:i:1:d:10.1007_s10479-024-06118-x
DOI: 10.1007/s10479-024-06118-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:342:y:2024:i:1:d:10.1007_s10479-024-06118-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.