IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2203.12457.html
   My bibliography  Save this paper

Neural Network and Order Flow, Technical Analysis: Predicting short-term direction of futures contract

Author

Listed:
  • Yiyang Zheng

Abstract

Predictions of short-term directional movement of the futures contract can be challenging as its pricing is often based on multiple complex dynamic conditions. This work presents a method for predicting the short-term directional movement of an underlying futures contract. We engineered a set of features from technical analysis, order flow, and order-book data. Then, Tabnet, a deep learning neural network, is trained using these features. We train our model on the Silver Futures Contract listed on Shanghai Futures Exchange and achieve an accuracy of 0.601 on predicting the directional change during the selected period.

Suggested Citation

  • Yiyang Zheng, 2022. "Neural Network and Order Flow, Technical Analysis: Predicting short-term direction of futures contract," Papers 2203.12457, arXiv.org.
  • Handle: RePEc:arx:papers:2203.12457
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2203.12457
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manish Kumar & M. Thenmozhi, 2014. "Forecasting stock index returns using ARIMA-SVM, ARIMA-ANN, and ARIMA-random forest hybrid models," International Journal of Banking, Accounting and Finance, Inderscience Enterprises Ltd, vol. 5(3), pages 284-308.
    2. Hedayati , Amin & Hedayati , Moein & Esfandyari, Morteza, 2016. "Stock market index prediction using artificial neural network," Journal of Economics, Finance and Administrative Science, Universidad ESAN, vol. 21(41), pages 89-93.
    3. Sidra Mehtab & Jaydip Sen, 2020. "Stock Price Prediction Using CNN and LSTM-Based Deep Learning Models," Papers 2010.13891, arXiv.org.
    4. Mojtaba Nabipour & Pooyan Nayyeri & Hamed Jabani & Amir Mosavi, 2020. "Deep learning for Stock Market Prediction," Papers 2004.01497, arXiv.org.
    5. Sidra Mehtab & Jaydip Sen & Abhishek Dutta, 2020. "Stock Price Prediction Using Machine Learning and LSTM-Based Deep Learning Models," Papers 2009.10819, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaydip Sen & Sidra Mehtab, 2021. "Accurate Stock Price Forecasting Using Robust and Optimized Deep Learning Models," Papers 2103.15096, arXiv.org.
    2. Jaydip Sen & Sidra Mehtab, 2021. "Design and Analysis of Robust Deep Learning Models for Stock Price Prediction," Papers 2106.09664, arXiv.org.
    3. Priyank Sonkiya & Vikas Bajpai & Anukriti Bansal, 2021. "Stock price prediction using BERT and GAN," Papers 2107.09055, arXiv.org.
    4. Jaydip Sen & Arpit Awad & Aaditya Raj & Gourav Ray & Pusparna Chakraborty & Sanket Das & Subhasmita Mishra, 2022. "Stock Performance Evaluation for Portfolio Design from Different Sectors of the Indian Stock Market," Papers 2208.07166, arXiv.org.
    5. Abhiraj Sen & Jaydip Sen, 2023. "Performance Evaluation of Equal-Weight Portfolio and Optimum Risk Portfolio on Indian Stocks," Papers 2309.13696, arXiv.org.
    6. Jaydip Sen & Rajdeep Sen & Abhishek Dutta, 2021. "Machine Learning in Finance-Emerging Trends and Challenges," Papers 2110.11999, arXiv.org.
    7. Jaydip Sen & Arup Dasgupta & Partha Pratim Sengupta & Sayantani Roy Choudhury, 2023. "A Comparative Study of Portfolio Optimization Methods for the Indian Stock Market," Papers 2310.14748, arXiv.org.
    8. Jaydip Sen & Saikat Mondal & Sidra Mehtab, 2021. "Analysis of Sectoral Profitability of the Indian Stock Market Using an LSTM Regression Model," Papers 2111.04976, arXiv.org.
    9. Jaydip Sen & Ashwin Kumar R S & Geetha Joseph & Kaushik Muthukrishnan & Koushik Tulasi & Praveen Varukolu, 2022. "Precise Stock Price Prediction for Robust Portfolio Design from Selected Sectors of the Indian Stock Market," Papers 2201.05570, arXiv.org.
    10. Jaydip Sen & Aditya Jaiswal & Anshuman Pathak & Atish Kumar Majee & Kushagra Kumar & Manas Kumar Sarkar & Soubhik Maji, 2023. "A Comparative Analysis of Portfolio Optimization Using Mean-Variance, Hierarchical Risk Parity, and Reinforcement Learning Approaches on the Indian Stock Market," Papers 2305.17523, arXiv.org.
    11. Jaydip Sen & Hetvi Waghela & Sneha Rakshit, 2024. "Exploring Sectoral Profitability in the Indian Stock Market Using Deep Learning," Papers 2407.01572, arXiv.org.
    12. Jaydip Sen & Abhishek Dutta, 2022. "A Comparative Study of Hierarchical Risk Parity Portfolio and Eigen Portfolio on the NIFTY 50 Stocks," Papers 2210.00984, arXiv.org.
    13. Jaydip Sen & Arup Dasgupta & Subhasis Dasgupta & Sayantani Roychoudhury, 2023. "A Portfolio Rebalancing Approach for the Indian Stock Market," Papers 2310.09770, arXiv.org.
    14. Jessie Sun, 2019. "A Stock Selection Method Based on Earning Yield Forecast Using Sequence Prediction Models," Papers 1905.04842, arXiv.org.
    15. Caporale, Guglielmo Maria & Gil-Alana, Luis Alberiko & Poza, Carlos, 2022. "The COVID-19 pandemic and the degree of persistence of US stock prices and bond yields," The Quarterly Review of Economics and Finance, Elsevier, vol. 86(C), pages 118-123.
    16. Sevcan Uzun & Ahmet Sensoy & Duc Khuong Nguyen, 2023. "Jump forecasting in foreign exchange markets: A high‐frequency analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(3), pages 578-624, April.
    17. Jeonghwa Cha & Kyungbo Park & Hangook Kim & Jongyi Hong, 2023. "Crisis Index Prediction Based on Momentum Theory and Earnings Downside Risk Theory: Focusing on South Korea’s Energy Industry," Energies, MDPI, vol. 16(5), pages 1-20, February.
    18. Frédy Pokou & Jules Sadefo Kamdem & François Benhmad, 2024. "Hybridization of ARIMA with Learning Models for Forecasting of Stock Market Time Series," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1349-1399, April.
    19. Miguel A. Jaramillo-Morán & Agustín García-García, 2019. "Applying Artificial Neural Networks to Forecast European Union Allowance Prices: The Effect of Information from Pollutant-Related Sectors," Energies, MDPI, vol. 12(23), pages 1-18, November.
    20. Sidra Mehtab & Jaydip Sen & Subhasis Dasgupta, 2020. "Robust Analysis of Stock Price Time Series Using CNN and LSTM-Based Deep Learning Models," Papers 2011.08011, arXiv.org, revised Jan 2021.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2203.12457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.