IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v64y2024i6d10.1007_s10614-024-10566-9.html
   My bibliography  Save this article

Developing Hybrid Deep Learning Models for Stock Price Prediction Using Enhanced Twitter Sentiment Score and Technical Indicators

Author

Listed:
  • Nabanita Das

    (Techno International New Town
    University of Engineering and Management)

  • Bikash Sadhukhan

    (Techno International New Town)

  • Rajdeep Ghosh

    (Techno International New Town)

  • Satyajit Chakrabarti

    (University of Engineering and Management)

Abstract

In recent years, there has been growing interest in using deep learning methods to improve the accuracy of stock price prediction, which has always been challenging due to the unpredictable nature of the market. This paper introduces two new hybrid deep learning-based models, named “En-Tweet-Deep-SMF” and “En-Tweet-Hib-SMF,” that combine effective strategies to enhance stock price prediction accuracy. These strategies involve enhancing Twitter sentiment scores using an enhanced model and utilizing potent technical indicators. The “En-Tweet-Deep-SMF” model employs a gated recurrent unit, while the “En-Tweet-Hib-SMF” model uses the convolutional neural network-bidirectional long-short term memory hybrid deep learning-based model. Additionally, kernel principal component analysis is utilized to reduce the dataset dimensionality. These models can capture both quantitative and qualitative factors that can influence stock prices, making them more accurate and robust than traditional methods. The proposed models have the potential to adapt and learn from new data and trends, providing traders, investors, and financial analysts with a valuable tool to make informed decisions and mitigate risks in the stock market. Experimental results indicate that these models outperform several state-of-the-art models, demonstrating their effectiveness and potential practical applications in the financial industry.

Suggested Citation

  • Nabanita Das & Bikash Sadhukhan & Rajdeep Ghosh & Satyajit Chakrabarti, 2024. "Developing Hybrid Deep Learning Models for Stock Price Prediction Using Enhanced Twitter Sentiment Score and Technical Indicators," Computational Economics, Springer;Society for Computational Economics, vol. 64(6), pages 3407-3446, December.
  • Handle: RePEc:kap:compec:v:64:y:2024:i:6:d:10.1007_s10614-024-10566-9
    DOI: 10.1007/s10614-024-10566-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-024-10566-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-024-10566-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chong Guan & Wenting Liu & Jack Yu-Chao Cheng, 2022. "Using Social Media to Predict the Stock Market Crash and Rebound amid the Pandemic: The Digital ‘Haves’ and ‘Have-mores’," Annals of Data Science, Springer, vol. 9(1), pages 5-31, February.
    2. Jiayu Qiu & Bin Wang & Changjun Zhou, 2020. "Forecasting stock prices with long-short term memory neural network based on attention mechanism," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-15, January.
    3. Huicheng Liu, 2018. "Leveraging Financial News for Stock Trend Prediction with Attention-Based Recurrent Neural Network," Papers 1811.06173, arXiv.org.
    4. Sadefo Kamdem, Jules & Bandolo Essomba, Rose & Njong Berinyuy, James, 2020. "Deep learning models for forecasting and analyzing the implications of COVID-19 spread on some commodities markets volatilities," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    5. Timm O. Sprenger & Andranik Tumasjan & Philipp G. Sandner & Isabell M. Welpe, 2014. "Tweets and Trades: the Information Content of Stock Microblogs," European Financial Management, European Financial Management Association, vol. 20(5), pages 926-957, November.
    6. Yonggang Lu & Qiujie Zheng, 2021. "Twitter public sentiment dynamics on cruise tourism during the COVID-19 pandemic," Current Issues in Tourism, Taylor & Francis Journals, vol. 24(7), pages 892-898, April.
    7. Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
    8. E. Iacomini & P. Vellucci, 2023. "Contrarian effect in opinion forming: Insights from Greta Thunberg phenomenon," The Journal of Mathematical Sociology, Taylor & Francis Journals, vol. 47(2), pages 123-169, April.
    9. Mojtaba Nabipour & Pooyan Nayyeri & Hamed Jabani & Amir Mosavi, 2020. "Deep learning for Stock Market Prediction," Papers 2004.01497, arXiv.org.
    10. Xiao Zhong & David Enke, 2019. "Predicting the daily return direction of the stock market using hybrid machine learning algorithms," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yiqi Deng & Siu Ming Yiu, 2022. "Deep Multiple Instance Learning For Forecasting Stock Trends Using Financial News," Papers 2206.14452, arXiv.org.
    2. Muhammad Ateeq ur REHMAN & Furman ALI & Shang XIE, 2022. "Impact of Foreign Investment News on the Return, Cost of Equity and Cash Flow Activities," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 112-127, December.
    3. Ton, Thai & Leung, Henry & Gao, Yang & Schiereck, Dirk, 2024. "Agreeing to disagree: Informativeness of sentiments in internet message boards," Pacific-Basin Finance Journal, Elsevier, vol. 87(C).
    4. Piñeiro-Chousa, Juan & López-Cabarcos, M.Ángeles & Ribeiro-Soriano, Domingo, 2020. "Does investor attention influence water companies’ stock returns?," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    5. Gabriele Ranco & Darko Aleksovski & Guido Caldarelli & Miha Grčar & Igor Mozetič, 2015. "The Effects of Twitter Sentiment on Stock Price Returns," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-21, September.
    6. Chong, Terence Tai Leung & Wu, Zhang & Liu, Yuchen, 2019. "Market Reaction to iPhone Rumors," MPRA Paper 92014, University Library of Munich, Germany.
    7. Smita Roy Trivedi, 2024. "Into the Unknown: Uncertainty, Foreboding and Financial Markets," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 31(1), pages 1-23, March.
    8. Arcuri, Maria Cristina & Gandolfi, Gino & Russo, Ivan, 2023. "Does fake news impact stock returns? Evidence from US and EU stock markets," Journal of Economics and Business, Elsevier, vol. 125.
    9. Piñeiro-Chousa, Juan Ramón & López-Cabarcos, M. Ángeles & Pérez-Pico, Ada María, 2016. "Examining the influence of stock market variables on microblogging sentiment," Journal of Business Research, Elsevier, vol. 69(6), pages 2087-2092.
    10. Miwa, Kotaro, 2023. "Divergent opinions on social media," International Review of Economics & Finance, Elsevier, vol. 86(C), pages 182-196.
    11. Al-Nasseri, Alya & Menla Ali, Faek, 2018. "What does investors' online divergence of opinion tell us about stock returns and trading volume?," Journal of Business Research, Elsevier, vol. 86(C), pages 166-178.
    12. Chopra, Ritika & Sharma, Gagan Deep & Pereira, Vijay, 2024. "Identifying Bulls and bears? A bibliometric review of applying artificial intelligence innovations for stock market prediction," Technovation, Elsevier, vol. 135(C).
    13. Alasdair Brown & Dooruj Rambaccussing & J. James Reade & Giambattista Rossi, 2016. "Using Social Media to Identify Market Ine!ciencies: Evidence from Twitter and Betfair," Working Papers 2016-002, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    14. Renault, Thomas, 2017. "Intraday online investor sentiment and return patterns in the U.S. stock market," Journal of Banking & Finance, Elsevier, vol. 84(C), pages 25-40.
    15. David William Witts & Emili Tortosa-Ausina & Iván Arribas, 2021. "The Irrational Market: Considering the effect of the online community Wall Street Bets on Financial Market Variables," Working Papers 2021/13, Economics Department, Universitat Jaume I, Castellón (Spain).
    16. Alasdair Brown & Dooruj Rambaccussing & James Reade & Giambattista Rossi, 2016. "Using Social Media to Identify Market Inefficiencies: Evidence from Twitter and Betfair," Economics Discussion Papers em-dp2016-01, Department of Economics, University of Reading.
    17. repec:hum:wpaper:sfb649dp2015-005 is not listed on IDEAS
    18. Michael Lachanski & Steven Pav, 2017. "Shy of the Character Limit: "Twitter Mood Predicts the Stock Market" Revisited," Econ Journal Watch, Econ Journal Watch, vol. 14(3), pages 302–345-3, September.
    19. Eierle, Brigitte & Klamer, Sebastian & Muck, Matthias, 2022. "Does it really pay off for investors to consider information from social media?," International Review of Financial Analysis, Elsevier, vol. 81(C).
    20. Szymon Lis, 2022. "Investor Sentiment in Asset Pricing Models: A Review," Working Papers 2022-14, Faculty of Economic Sciences, University of Warsaw.
    21. Nishimura, Yusaku & Sun, Bianxia, 2021. "President’s Tweets, US-China economic conflict and stock market Volatility: Evidence from China and G5 countries," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:64:y:2024:i:6:d:10.1007_s10614-024-10566-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.