IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2411.08804.html
   My bibliography  Save this paper

FinRobot: AI Agent for Equity Research and Valuation with Large Language Models

Author

Listed:
  • Tianyu Zhou
  • Pinqiao Wang
  • Yilin Wu
  • Hongyang Yang

Abstract

As financial markets grow increasingly complex, there is a rising need for automated tools that can effectively assist human analysts in equity research, particularly within sell-side research. While Generative AI (GenAI) has attracted significant attention in this field, existing AI solutions often fall short due to their narrow focus on technical factors and limited capacity for discretionary judgment. These limitations hinder their ability to adapt to new data in real-time and accurately assess risks, which diminishes their practical value for investors. This paper presents FinRobot, the first AI agent framework specifically designed for equity research. FinRobot employs a multi-agent Chain of Thought (CoT) system, integrating both quantitative and qualitative analyses to emulate the comprehensive reasoning of a human analyst. The system is structured around three specialized agents: the Data-CoT Agent, which aggregates diverse data sources for robust financial integration; the Concept-CoT Agent, which mimics an analysts reasoning to generate actionable insights; and the Thesis-CoT Agent, which synthesizes these insights into a coherent investment thesis and report. FinRobot provides thorough company analysis supported by precise numerical data, industry-appropriate valuation metrics, and realistic risk assessments. Its dynamically updatable data pipeline ensures that research remains timely and relevant, adapting seamlessly to new financial information. Unlike existing automated research tools, such as CapitalCube and Wright Reports, FinRobot delivers insights comparable to those produced by major brokerage firms and fundamental research vendors. We open-source FinRobot at \url{https://github. com/AI4Finance-Foundation/FinRobot}.

Suggested Citation

  • Tianyu Zhou & Pinqiao Wang & Yilin Wu & Hongyang Yang, 2024. "FinRobot: AI Agent for Equity Research and Valuation with Large Language Models," Papers 2411.08804, arXiv.org.
  • Handle: RePEc:arx:papers:2411.08804
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2411.08804
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shijie Wu & Ozan Irsoy & Steven Lu & Vadim Dabravolski & Mark Dredze & Sebastian Gehrmann & Prabhanjan Kambadur & David Rosenberg & Gideon Mann, 2023. "BloombergGPT: A Large Language Model for Finance," Papers 2303.17564, arXiv.org, revised Dec 2023.
    2. Abarbanell, JS & Bushee, BJ, 1997. "Fundamental analysis, future earnings, and stock prices," Journal of Accounting Research, Wiley Blackwell, vol. 35(1), pages 1-24.
    3. Mojtaba Nabipour & Pooyan Nayyeri & Hamed Jabani & Amir Mosavi, 2020. "Deep learning for Stock Market Prediction," Papers 2004.01497, arXiv.org.
    4. Yuqi Nie & Yaxuan Kong & Xiaowen Dong & John M. Mulvey & H. Vincent Poor & Qingsong Wen & Stefan Zohren, 2024. "A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges," Papers 2406.11903, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuewen Han & Neng Wang & Shangkun Che & Hongyang Yang & Kunpeng Zhang & Sean Xin Xu, 2024. "Enhancing Investment Analysis: Optimizing AI-Agent Collaboration in Financial Research," Papers 2411.04788, arXiv.org.
    2. Bradley Blaylock & Bradley P. Lawson & Michael A. Mayberry, 2020. "Taxable income, future profitability, and stock returns," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 47(7-8), pages 858-881, July.
    3. Jessie Sun, 2019. "A Stock Selection Method Based on Earning Yield Forecast Using Sequence Prediction Models," Papers 1905.04842, arXiv.org.
    4. Ching-Nam Hang & Pei-Duo Yu & Roberto Morabito & Chee-Wei Tan, 2024. "Large Language Models Meet Next-Generation Networking Technologies: A Review," Future Internet, MDPI, vol. 16(10), pages 1-29, October.
    5. Ghada A. Altarawneh & Ahmad B. Hassanat & Ahmad S. Tarawneh & Ahmad Abadleh & Malek Alrashidi & Mansoor Alghamdi, 2022. "Stock Price Forecasting for Jordan Insurance Companies Amid the COVID-19 Pandemic Utilizing Off-the-Shelf Technical Analysis Methods," Economies, MDPI, vol. 10(2), pages 1-18, February.
    6. Mauri, Alfredo J. & Lin, Jing & Neiva De Figueiredo, João, 2013. "The influence of strategic patterns of internationalization on the accuracy and bias of earnings forecasts by financial analysts," International Business Review, Elsevier, vol. 22(4), pages 725-735.
    7. Gikas Hardouvelis & George Papanastasopoulos & Dimitrios D. Thomakos & Tao Wang, 2007. "Accruals, Net Stock Issues and Value-Glamour Anomalies: New Evidence on their Relation," Working Paper series 47_07, Rimini Centre for Economic Analysis.
    8. S. Divyashree & Christy Jackson Joshua & Abdul Quadir Md & Senthilkumar Mohan & A. Sheik Abdullah & Ummul Hanan Mohamad & Nisreen Innab & Ali Ahmadian, 2024. "Enabling business sustainability for stock market data using machine learning and deep learning approaches," Annals of Operations Research, Springer, vol. 342(1), pages 287-322, November.
    9. Lezhi Li & Ting-Yu Chang & Hai Wang, 2023. "Multimodal Gen-AI for Fundamental Investment Research," Papers 2401.06164, arXiv.org.
    10. Hirshleifer, David & Kewei Hou & Teoh, Siew Hong & Yinglei Zhang, 2004. "Do investors overvalue firms with bloated balance sheets?," Journal of Accounting and Economics, Elsevier, vol. 38(1), pages 297-331, December.
    11. Dafydd Mali & Hyoung‐joo Lim, 2021. "Do Relatively More Efficient Firms Demand Additional Audit Effort (Hours)?," Australian Accounting Review, CPA Australia, vol. 31(2), pages 108-127, June.
    12. Bartram, Söhnke M. & Grinblatt, Mark, 2018. "Agnostic fundamental analysis works," Journal of Financial Economics, Elsevier, vol. 128(1), pages 125-147.
    13. Thanos Konstantinidis & Giorgos Iacovides & Mingxue Xu & Tony G. Constantinides & Danilo Mandic, 2024. "FinLlama: Financial Sentiment Classification for Algorithmic Trading Applications," Papers 2403.12285, arXiv.org.
    14. Zefan Dong & Yonghui Zhou, 2024. "A Novel Hybrid Model for Financial Forecasting Based on CEEMDAN-SE and ARIMA-CNN-LSTM," Mathematics, MDPI, vol. 12(16), pages 1-16, August.
    15. Ken Li, 2024. "Liquidity ratios and corporate failures," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 64(1), pages 1111-1134, March.
    16. Chi Chen & Li Zhao & Wei Cao & Jiang Bian & Chunxiao Xing, 2020. "Trimming the Sail: A Second-order Learning Paradigm for Stock Prediction," Papers 2002.06878, arXiv.org.
    17. Lu Zhang, 2017. "The Investment CAPM," European Financial Management, European Financial Management Association, vol. 23(4), pages 545-603, September.
    18. Chahine, Salim & Daher, Mai & Saade, Samer, 2021. "Doing good in periods of high uncertainty: Economic policy uncertainty, corporate social responsibility, and analyst forecast error," Journal of Financial Stability, Elsevier, vol. 56(C).
    19. Photis Panayides & Neophytos Lambertides, 2011. "Fundamental Analysis and Relative Efficiency of Maritime Firms: Dry Bulk vs Tanker Firms," Chapters, in: Kevin Cullinane (ed.), International Handbook of Maritime Economics, chapter 5, Edward Elgar Publishing.
    20. Palas, Rimona & Solomon, Dov & Gafni, Dalit & Baum, Ido, 2023. "Does wedge size matter? Financial reporting quality and effective regulation of dual-class firms," Finance Research Letters, Elsevier, vol. 54(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2411.08804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.