IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i16p2434-d1450541.html
   My bibliography  Save this article

A Novel Hybrid Model for Financial Forecasting Based on CEEMDAN-SE and ARIMA-CNN-LSTM

Author

Listed:
  • Zefan Dong

    (School of Big Data and Computer Science, Guizhou Normal University, Guiyang 550003, China)

  • Yonghui Zhou

    (School of Big Data and Computer Science, Guizhou Normal University, Guiyang 550003, China)

Abstract

Financial time series data are characterized by non-linearity, non-stationarity, and stochastic complexity, so predicting such data presents a significant challenge. This paper proposes a novel hybrid model for financial forecasting based on CEEMDAN-SE and ARIMA- CNN-LSTM. With the help of the CEEMDAN-SE method, the original data are decomposed into several IMFs and reconstructed via sample entropy into a lower-complexity stationary high-frequency component and a low-frequency component. The high-frequency component is predicted by the ARIMA statistical forecasting model, while the low-frequency component is predicted by a neural network model combining CNN and LSTM. Compared to some classical prediction models, our algorithm exhibits superior performance in terms of three evaluation indexes, namely, RMSE, MAE, and MAPE, effectively enhancing model accuracy while reducing computational overhead.

Suggested Citation

  • Zefan Dong & Yonghui Zhou, 2024. "A Novel Hybrid Model for Financial Forecasting Based on CEEMDAN-SE and ARIMA-CNN-LSTM," Mathematics, MDPI, vol. 12(16), pages 1-16, August.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:16:p:2434-:d:1450541
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/16/2434/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/16/2434/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Deepak Gupta & Mahardhika Pratama & Zhenyuan Ma & Jun Li & Mukesh Prasad, 2019. "Financial time series forecasting using twin support vector regression," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-27, March.
    2. Mojtaba Nabipour & Pooyan Nayyeri & Hamed Jabani & Amir Mosavi, 2020. "Deep learning for Stock Market Prediction," Papers 2004.01497, arXiv.org.
    3. Ma, Yao & Yang, Baochen & Su, Yunpeng, 2020. "Technical trading index, return predictability and idiosyncratic volatility," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 879-900.
    4. E, Jianwei & Ye, Jimin & Jin, Haihong, 2019. "A novel hybrid model on the prediction of time series and its application for the gold price analysis and forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
    2. Sumit Saroha & Marta Zurek-Mortka & Jerzy Ryszard Szymanski & Vineet Shekher & Pardeep Singla, 2021. "Forecasting of Market Clearing Volume Using Wavelet Packet-Based Neural Networks with Tracking Signals," Energies, MDPI, vol. 14(19), pages 1-21, September.
    3. Xuliang Tang & Heng Wan & Weiwen Wang & Mengxu Gu & Linfeng Wang & Linfeng Gan, 2023. "Lithium-Ion Battery Remaining Useful Life Prediction Based on Hybrid Model," Sustainability, MDPI, vol. 15(7), pages 1-18, April.
    4. Liu, Qing & Liu, Min & Zhou, Hanlu & Yan, Feng, 2022. "A multi-model fusion based non-ferrous metal price forecasting," Resources Policy, Elsevier, vol. 77(C).
    5. Cai, Lingru & Zhang, Zhanchang & Yang, Junjie & Yu, Yidan & Zhou, Teng & Qin, Jing, 2019. "A noise-immune Kalman filter for short-term traffic flow forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    6. Lu, Hongfang & Ma, Xin & Huang, Kun & Azimi, Mohammadamin, 2020. "Prediction of offshore wind farm power using a novel two-stage model combining kernel-based nonlinear extension of the Arps decline model with a multi-objective grey wolf optimizer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    7. Nghia Chu & Binh Dao & Nga Pham & Huy Nguyen & Hien Tran, 2022. "Predicting Mutual Funds' Performance using Deep Learning and Ensemble Techniques," Papers 2209.09649, arXiv.org, revised Jul 2023.
    8. Priyank Sonkiya & Vikas Bajpai & Anukriti Bansal, 2021. "Stock price prediction using BERT and GAN," Papers 2107.09055, arXiv.org.
    9. Sanghyuk Yoo & Sangyong Jeon & Seunghwan Jeong & Heesoo Lee & Hosun Ryou & Taehyun Park & Yeonji Choi & Kyongjoo Oh, 2021. "Prediction of the Change Points in Stock Markets Using DAE-LSTM," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    10. Xiao, Yu-jie & Wang, Xiao-kang & Wang, Jian-qiang & Zhang, Hong-yu, 2021. "An adaptive decomposition and ensemble model for short-term air pollutant concentration forecast using ICEEMDAN-ICA," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    11. Fijorek, Kamil & Jurkowska, Aleksandra & Jonek-Kowalska, Izabela, 2021. "Financial contagion between the financial and the mining industries – Empirical evidence based on the symmetric and asymmetric CoVaR approach," Resources Policy, Elsevier, vol. 70(C).
    12. Xiangzhou Chen & Zhi Long, 2023. "E-Commerce Enterprises Financial Risk Prediction Based on FA-PSO-LSTM Neural Network Deep Learning Model," Sustainability, MDPI, vol. 15(7), pages 1-17, March.
    13. Meira, Erick & Cyrino Oliveira, Fernando Luiz & Jeon, Jooyoung, 2021. "Treating and Pruning: New approaches to forecasting model selection and combination using prediction intervals," International Journal of Forecasting, Elsevier, vol. 37(2), pages 547-568.
    14. Yang, Kailing & Zhang, Xi & Luo, Haojia & Hou, Xianping & Lin, Yu & Wu, Jingyu & Yu, Liang, 2024. "Predicting energy prices based on a novel hybrid machine learning: Comprehensive study of multi-step price forecasting," Energy, Elsevier, vol. 298(C).
    15. Suya Jin & Guiyan Liu & Qifeng Bai, 2023. "Deep Learning in COVID-19 Diagnosis, Prognosis and Treatment Selection," Mathematics, MDPI, vol. 11(6), pages 1-16, March.
    16. Lin, Yu & Lu, Qin & Tan, Bin & Yu, Yuanyuan, 2022. "Forecasting energy prices using a novel hybrid model with variational mode decomposition," Energy, Elsevier, vol. 246(C).
    17. Mohammed El Amine Senoussaoui & Mostefa Brahami & Issouf Fofana, 2021. "Transformer Oil Quality Assessment Using Random Forest with Feature Engineering," Energies, MDPI, vol. 14(7), pages 1-15, March.
    18. Pedro M. Mirete-Ferrer & Alberto Garcia-Garcia & Juan Samuel Baixauli-Soler & Maria A. Prats, 2022. "A Review on Machine Learning for Asset Management," Risks, MDPI, vol. 10(4), pages 1-46, April.
    19. Arvind Kumar Sinha & Pradeep Shende, 2024. "Uncertainty Optimization Based Feature Selection Model for Stock Marketing," Computational Economics, Springer;Society for Computational Economics, vol. 63(1), pages 357-389, January.
    20. Ma, Yao & Yang, Baochen & Su, Yunpeng, 2021. "Stock return predictability: Evidence from moving averages of trading volume," Pacific-Basin Finance Journal, Elsevier, vol. 65(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:16:p:2434-:d:1450541. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.