IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v171y2016ip1p151-161.html
   My bibliography  Save this article

Prediction modeling and pattern recognition for patient readmission

Author

Listed:
  • Golmohammadi, Davood
  • Radnia, Naeimeh

Abstract

Readmission is a major source of cost for healthcare systems. Hospital-specific readmission rates are considered an indicator of hospital performance and generate public interest regarding the health care quality. We aimed to identify those patients who are likely to be readmitted to the hospital. The identified patients can then be considered by health care personnel for application of preventive alternative measures such as: providing intensive post-discharge care, managing the conditions of the most vulnerable in their home, supporting self-care, and integrating health services and information technology systems to avoid unnecessary readmissions. Neural Network, Classification and Regression model and Chi-squared Automatic Interaction Detection models were used for the readmission prediction. All models were able to perform with an overall accuracy above 80%, with the latter two models having the advantage of providing the user with the opportunity of selecting different misclassification costs. We employed C5.0 algorithm to search for recurring pattern in the history or demographics of patients who have been readmitted and explored if a rule of thumb can be derived to predict those at risk of future readmissions. Moreover, the key variables influencing readmission were studied based on a large data set. The most important factors contributing to readmission were determined such as age, sex, number of previous prescriptions and length of previous stays, place of service, and number of previous claims.

Suggested Citation

  • Golmohammadi, Davood & Radnia, Naeimeh, 2016. "Prediction modeling and pattern recognition for patient readmission," International Journal of Production Economics, Elsevier, vol. 171(P1), pages 151-161.
  • Handle: RePEc:eee:proeco:v:171:y:2016:i:p1:p:151-161
    DOI: 10.1016/j.ijpe.2015.09.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527315003655
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2015.09.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:wyi:journl:002118 is not listed on IDEAS
    2. Davood Golmohammadi & Robert C. Creese & Haleh Valian, 2009. "Neural network application for supplier selection," International Journal of Product Development, Inderscience Enterprises Ltd, vol. 8(3), pages 252-275.
    3. Qu, Xiuli & Shi, Jing, 2011. "Modeling the effect of patient choice on the performance of open access scheduling," International Journal of Production Economics, Elsevier, vol. 129(2), pages 314-327, February.
    4. Hong, Yongmiao & Lin, Hai & Wang, Shouyang, 2010. "Modeling the dynamics of Chinese spot interest rates," Journal of Banking & Finance, Elsevier, vol. 34(5), pages 1047-1061, May.
    5. van der Vaart, Taco & Vastag, Gyula & Wijngaard, Jacob, 2011. "Facets of operational performance in an emergency room (ER)," International Journal of Production Economics, Elsevier, vol. 133(1), pages 201-211, September.
    6. Golmohammadi, Davood, 2011. "Neural network application for fuzzy multi-criteria decision making problems," International Journal of Production Economics, Elsevier, vol. 131(2), pages 490-504, June.
    7. Saremi, Alireza & Jula, Payman & ElMekkawy, Tarek & Wang, G. Gary, 2013. "Appointment scheduling of outpatient surgical services in a multistage operating room department," International Journal of Production Economics, Elsevier, vol. 141(2), pages 646-658.
    8. Ben Bachouch, Rym & Guinet, Alain & Hajri-Gabouj, Sonia, 2012. "An integer linear model for hospital bed planning," International Journal of Production Economics, Elsevier, vol. 140(2), pages 833-843.
    9. Ottenbacher, K.J. & Smith, P.M. & Illig, S.B. & Fiedler, R.C. & Granger, C.V., 2000. "Length of stay and hospital readmission for persons with disabilities," American Journal of Public Health, American Public Health Association, vol. 90(12), pages 1920-1923.
    10. Frances KY Wong & Moon Fai Chan & Susan Chow & Katherine Chang & Loretta Chung & Wai‐man Lee & Rance Lee, 2010. "What accounts for hospital readmission?," Journal of Clinical Nursing, John Wiley & Sons, vol. 19(23‐24), pages 3334-3346, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Heng & Liu, Zixian & Li, Mei & Liang, Lijun, 2022. "Optimal monitoring policies for chronic diseases under healthcare warranty," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    2. Dina Bentayeb & Nadia Lahrichi & Louis-Martin Rousseau, 2019. "Patient scheduling based on a service-time prediction model: a data-driven study for a radiotherapy center," Health Care Management Science, Springer, vol. 22(4), pages 768-782, December.
    3. Benevento, Elisabetta & Aloini, Davide & Squicciarini, Nunzia, 2023. "Towards a real-time prediction of waiting times in emergency departments: A comparative analysis of machine learning techniques," International Journal of Forecasting, Elsevier, vol. 39(1), pages 192-208.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Golmohammadi, Davood, 2016. "Predicting hospital admissions to reduce emergency department boarding," International Journal of Production Economics, Elsevier, vol. 182(C), pages 535-544.
    2. Araz, Ozgur M. & Olson, David & Ramirez-Nafarrate, Adrian, 2019. "Predictive analytics for hospital admissions from the emergency department using triage information," International Journal of Production Economics, Elsevier, vol. 208(C), pages 199-207.
    3. Hejer Khlif Hachicha & Farah Zeghal Mansour, 2018. "Two-MILP models for scheduling elective surgeries within a private healthcare facility," Health Care Management Science, Springer, vol. 21(3), pages 376-392, September.
    4. Wang, Yu & Tang, Jiafu & Fung, Richard Y.K., 2014. "A column-generation-based heuristic algorithm for solving operating theater planning problem under stochastic demand and surgery cancellation risk," International Journal of Production Economics, Elsevier, vol. 158(C), pages 28-36.
    5. Tugba Cayirli & Pinar Dursun & Evrim D. Gunes, 2019. "An integrated analysis of capacity allocation and patient scheduling in presence of seasonal walk-ins," Flexible Services and Manufacturing Journal, Springer, vol. 31(2), pages 524-561, June.
    6. Jaime González & Juan-Carlos Ferrer & Alejandro Cataldo & Luis Rojas, 2019. "A proactive transfer policy for critical patient flow management," Health Care Management Science, Springer, vol. 22(2), pages 287-303, June.
    7. Rezapour, Shabnam & Naderi, Nazanin & Morshedlou, Nazanin & Rezapourbehnagh, Shaghayegh, 2018. "Optimal deployment of emergency resources in sudden onset disasters," International Journal of Production Economics, Elsevier, vol. 204(C), pages 365-382.
    8. Wenjuan Fan & Yi Wang & Tongzhu Liu & Guixian Tong, 2020. "A patient flow scheduling problem in ophthalmology clinic solved by the hybrid EDA–VNS algorithm," Journal of Combinatorial Optimization, Springer, vol. 39(2), pages 547-580, February.
    9. Aisha Tayyab & Saif Ullah & Mohammed Fazle Baki, 2023. "An Outer Approximation Method for Scheduling Elective Surgeries with Sequence Dependent Setup Times to Multiple Operating Rooms," Mathematics, MDPI, vol. 11(11), pages 1-15, May.
    10. Michael Samudra & Carla Van Riet & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2016. "Scheduling operating rooms: achievements, challenges and pitfalls," Journal of Scheduling, Springer, vol. 19(5), pages 493-525, October.
    11. Kamran Kianfar & Arezoo Atighehchian, 2023. "A hybrid heuristic approach to master surgery scheduling with downstream resource constraints and dividable operating room blocks," Annals of Operations Research, Springer, vol. 328(1), pages 727-754, September.
    12. Kenneth J. Klassen & Reena Yoogalingam, 2019. "Appointment scheduling in multi-stage outpatient clinics," Health Care Management Science, Springer, vol. 22(2), pages 229-244, June.
    13. Guido, Rosita & Groccia, Maria Carmela & Conforti, Domenico, 2018. "An efficient matheuristic for offline patient-to-bed assignment problems," European Journal of Operational Research, Elsevier, vol. 268(2), pages 486-503.
    14. Lee, Jooh & Kwon, He-Boong, 2017. "Progressive performance modeling for the strategic determinants of market value in the high-tech oriented SMEs," International Journal of Production Economics, Elsevier, vol. 183(PA), pages 91-102.
    15. Golmohammadi, Davood, 2011. "Neural network application for fuzzy multi-criteria decision making problems," International Journal of Production Economics, Elsevier, vol. 131(2), pages 490-504, June.
    16. Dobrzykowski, David & Saboori Deilami, Vafa & Hong, Paul & Kim, Seung-Chul, 2014. "A structured analysis of operations and supply chain management research in healthcare (1982–2011)," International Journal of Production Economics, Elsevier, vol. 147(PB), pages 514-530.
    17. Silva, Thiago A.O. & de Souza, Mauricio C., 2020. "Surgical scheduling under uncertainty by approximate dynamic programming," Omega, Elsevier, vol. 95(C).
    18. Biswas, Sumana & Ali, Ismail & Chakrabortty, Ripon K. & Turan, Hasan Hüseyin & Elsawah, Sondoss & Ryan, Michael J., 2022. "Dynamic modeling for product family evolution combined with artificial neural network based forecasting model: A study of iPhone evolution," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    19. Benevento, Elisabetta & Aloini, Davide & Squicciarini, Nunzia, 2023. "Towards a real-time prediction of waiting times in emergency departments: A comparative analysis of machine learning techniques," International Journal of Forecasting, Elsevier, vol. 39(1), pages 192-208.
    20. Gerami Farzad & Saidi Mehrabad Mohammad, 2016. "A Stochastic Surgery Sequencing Model Considering the Moral and Human Virtues," Modern Applied Science, Canadian Center of Science and Education, vol. 10(9), pages 1-68, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:171:y:2016:i:p1:p:151-161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.