IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v38y2014icp633-639.html
   My bibliography  Save this article

PSO-based high order time invariant fuzzy time series method: Application to stock exchange data

Author

Listed:
  • Egrioglu, Erol

Abstract

Fuzzy time series methods are effective techniques to forecast time series. Fuzzy time series methods are based on fuzzy set theory. In the early years, classical fuzzy set operations were used in the fuzzy time series methods. In recent years, artificial intelligence techniques have been used in different stages of fuzzy time series methods. In this paper, a novel fuzzy time series method which is based on particle swarm optimization is proposed. A high order fuzzy time series forecasting model is used in the proposed method. In the proposed method, determination of fuzzy relations is performed by estimating the optimal fuzzy relation matrix. The performance of the proposed method is compared to some methods in the literature by using three real world time series. It is shown that the proposed method has better performance than other methods in the literature.

Suggested Citation

  • Egrioglu, Erol, 2014. "PSO-based high order time invariant fuzzy time series method: Application to stock exchange data," Economic Modelling, Elsevier, vol. 38(C), pages 633-639.
  • Handle: RePEc:eee:ecmode:v:38:y:2014:i:c:p:633-639
    DOI: 10.1016/j.econmod.2014.02.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999314000613
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econmod.2014.02.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, Ching-Hsue & Wei, Liang-Ying & Liu, Jing-Wei & Chen, Tai-Liang, 2013. "OWA-based ANFIS model for TAIEX forecasting," Economic Modelling, Elsevier, vol. 30(C), pages 442-448.
    2. Cheng, Ching-Hsue & Wei, Liang-Ying, 2014. "A novel time-series model based on empirical mode decomposition for forecasting TAIEX," Economic Modelling, Elsevier, vol. 36(C), pages 136-141.
    3. Wei, Liang-Ying, 2013. "A hybrid model based on ANFIS and adaptive expectation genetic algorithm to forecast TAIEX," Economic Modelling, Elsevier, vol. 33(C), pages 893-899.
    4. Jilani, Tahseen Ahmed & Burney, Syed Muhammad Aqil, 2008. "A refined fuzzy time series model for stock market forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2857-2862.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bundzel, Marek & Kasanický, Tomáš & Pinčák, Richard, 2016. "Using string invariants for prediction searching for optimal parameters," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 680-688.
    2. Marek Bundzel & Tomas Kasanicky & Richard Pincak, 2016. "Using String Invariants for Prediction Searching for Optimal Parameters," Papers 1606.06003, arXiv.org.
    3. Fernando G. Bernardes & Douglas A. G. Vieira & Vasile Palade & Rodney R. Saldanha, 2018. "Winds of Change: How Up-To-Date Forecasting Methods Could Help Change Brazilian Wind Energy Policy and Save Billions of US$," Energies, MDPI, vol. 11(11), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Shaolong & Wang, Shouyang & Wei, Yunjie, 2019. "A new multiscale decomposition ensemble approach for forecasting exchange rates," Economic Modelling, Elsevier, vol. 81(C), pages 49-58.
    2. Kaur, Gurbinder & Dhar, Joydip & Guha, Rangan Kumar, 2016. "Minimal variability OWA operator combining ANFIS and fuzzy c-means for forecasting BSE index," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 122(C), pages 69-80.
    3. Marek Bundzel & Tomas Kasanicky & Richard Pincak, 2016. "Using String Invariants for Prediction Searching for Optimal Parameters," Papers 1606.06003, arXiv.org.
    4. Bundzel, Marek & Kasanický, Tomáš & Pinčák, Richard, 2016. "Using string invariants for prediction searching for optimal parameters," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 680-688.
    5. Meisam Nasrollahi & Jafar Razmi, 2021. "A mathematical model for designing an integrated pharmaceutical supply chain with maximum expected coverage under uncertainty," Operational Research, Springer, vol. 21(1), pages 525-552, March.
    6. Oscar Claveria & Enric Monte & Salvador Torra, 2017. "A new approach for the quantification of qualitative measures of economic expectations," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(6), pages 2685-2706, November.
    7. Noemi Nava & Tiziana Di Matteo & Tomaso Aste, 2018. "Financial Time Series Forecasting Using Empirical Mode Decomposition and Support Vector Regression," Risks, MDPI, vol. 6(1), pages 1-21, February.
    8. Cheng, Ching-Hsue & Wei, Liang-Ying & Liu, Jing-Wei & Chen, Tai-Liang, 2013. "OWA-based ANFIS model for TAIEX forecasting," Economic Modelling, Elsevier, vol. 30(C), pages 442-448.
    9. Mohammad Almasarweh & S. AL Wadi, 2018. "ARIMA Model in Predicting Banking Stock Market Data," Modern Applied Science, Canadian Center of Science and Education, vol. 12(11), pages 309-309, November.
    10. Nava, Noemi & Di Matteo, Tiziana & Aste, Tomaso, 2018. "Financial time series forecasting using empirical mode decomposition and support vector regression," LSE Research Online Documents on Economics 91028, London School of Economics and Political Science, LSE Library.
    11. Oscar Claveria & Enric Monte & Salvador Torra, 2018. "“Tracking economic growth by evolving expectations via genetic programming: A two-step approach”," AQR Working Papers 201801, University of Barcelona, Regional Quantitative Analysis Group, revised Jan 2018.
    12. Zhu, Yongguang & Xu, Deyi & Cheng, Jinhua & Ali, Saleem Hassan, 2018. "Estimating the impact of China's export policy on tin prices: a mode decomposition counterfactual analysis method," Resources Policy, Elsevier, vol. 59(C), pages 250-264.
    13. Mojtaba Sedighi & Hossein Jahangirnia & Mohsen Gharakhani & Saeed Farahani Fard, 2019. "A Novel Hybrid Model for Stock Price Forecasting Based on Metaheuristics and Support Vector Machine," Data, MDPI, vol. 4(2), pages 1-28, May.
    14. Lahmiri, Salim, 2016. "Interest rate next-day variation prediction based on hybrid feedforward neural network, particle swarm optimization, and multiresolution techniques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 388-396.
    15. Colubi, Ana & Ramos-Guajardo, Ana Belén, 2023. "Fuzzy sets and (fuzzy) random sets in Econometrics and Statistics," Econometrics and Statistics, Elsevier, vol. 26(C), pages 84-98.
    16. Wang, Haoyu & Di, Junpeng & Yang, Zhaojun & Han, Qing, 2020. "Assessment of mutual fund performance based on Ensemble Empirical Mode Decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    17. S. AL Wadi & Mohammad Almasarweh & Ahmed Atallah Alsaraireh, 2018. "Predicting Closed Price Time Series Data Using ARIMA Model," Modern Applied Science, Canadian Center of Science and Education, vol. 12(11), pages 181-181, November.
    18. Tiwari, Aviral K. & Dar, Arif B. & Bhanja, Niyati & Gupta, Rangan, 2016. "A historical analysis of the US stock price index using empirical mode decomposition over 1791-2015," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 10, pages 1-15.
    19. Reza Kiani Mavi & Neda Kiani Mavi & Mark Goh, 2017. "Modeling corporate entrepreneurship success with ANFIS," Operational Research, Springer, vol. 17(1), pages 213-238, April.
    20. Niu, Xinsong & Wang, Jiyang, 2019. "A combined model based on data preprocessing strategy and multi-objective optimization algorithm for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 241(C), pages 519-539.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:38:y:2014:i:c:p:633-639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.