IDEAS home Printed from https://ideas.repec.org/a/asi/joasrj/v8y2018i2p52-60id3874.html
   My bibliography  Save this article

Forecasting Energy Consumption of Turkey by Arima Model

Author

Listed:
  • Suat Ozturk
  • Feride Ozturk

Abstract

Forecasting energy consumption has an important role in planning energy strategies for both policy makers and related organizations in any country. In this study, coal, oil, natural gas, renewable and total energy consumption data for 1970-2015 is used to forecast energy consumption of Turkey for the next 25 years, using autoregressive integrated moving average (ARIMA) model. The ARIMA models are determined to be ARIMA(1, 1, 1) for coal consumption, ARIMA (0, 1, 0) for oil consumption, ARIMA (0, 0, 0) for natural gas consumption, ARIMA (1, 1, 0) for renewable energy consumption and ARIMA (0, 1, 2) for total energy consumption. The results indicate that Turkey's energy consumption will continue to increase by the end of 2040. Consumption of coal, oil, natural gas, renewable energy and total energy will continue to increase at an annual average rate of 4.87 %, 3.92 %, 4.39 %, 1.64 % and 4.20 %, respectively in the next 25 years.

Suggested Citation

  • Suat Ozturk & Feride Ozturk, 2018. "Forecasting Energy Consumption of Turkey by Arima Model," Journal of Asian Scientific Research, Asian Economic and Social Society, vol. 8(2), pages 52-60.
  • Handle: RePEc:asi:joasrj:v:8:y:2018:i:2:p:52-60:id:3874
    as

    Download full text from publisher

    File URL: https://archive.aessweb.com/index.php/5003/article/view/3874/6093
    Download Restriction: no

    File URL: https://archive.aessweb.com/index.php/5003/article/view/3874/6440
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piotr Bórawski & Lisa Holden & Marek Bartłomiej Bórawski & Bartosz Mickiewicz, 2022. "Perspectives of Biodiesel Development in Poland against the Background of the European Union," Energies, MDPI, vol. 15(12), pages 1-15, June.
    2. Bórawski, Piotr & Holden, Lisa & Bełdycka-Bórawska, Aneta, 2023. "Perspectives of photovoltaic energy market development in the european union," Energy, Elsevier, vol. 270(C).
    3. Pruethsan Sutthichaimethee & Danupon Ariyasajjakorn, 2018. "Relationships between Causal Factors Affecting Future Carbon Dioxide Output from Thailand’s Transportation Sector under the Government’s Sustainability Policy: Expanding the SEM-VECM Model," Resources, MDPI, vol. 7(4), pages 1-18, December.
    4. Aneta Bełdycka-Bórawska & Piotr Bórawski & Lisa Holden & Tomasz Rokicki & Bogdan Klepacki, 2022. "Factors Shaping Performance of Polish Biodiesel Producers Participating in the Farm Accountancy Data Network in the Context of the Common Agricultural Policy of the European Union," Energies, MDPI, vol. 15(19), pages 1-25, October.
    5. Ruma Talukdar & Nibedita Mahanta, 2023. "Forecasting of Domestic Electricity Consumption in Assam, India," International Journal of Energy Economics and Policy, Econjournals, vol. 13(5), pages 229-235, September.
    6. Monika Zielińska-Sitkiewicz & Mariola Chrzanowska & Konrad Furmańczyk & Kacper Paczutkowski, 2021. "Analysis of Electricity Consumption in Poland Using Prediction Models and Neural Networks," Energies, MDPI, vol. 14(20), pages 1-21, October.
    7. Anca Mehedintu & Mihaela Sterpu & Georgeta Soava, 2018. "Estimation and Forecasts for the Share of Renewable Energy Consumption in Final Energy Consumption by 2020 in the European Union," Sustainability, MDPI, vol. 10(5), pages 1-22, May.
    8. Lee, Yoonjae & Ha, Byeongmin & Hwangbo, Soonho, 2022. "Generative model-based hybrid forecasting model for renewable electricity supply using long short-term memory networks: A case study of South Korea's energy transition policy," Renewable Energy, Elsevier, vol. 200(C), pages 69-87.
    9. Mihaela Simionescu & Wadim Strielkowski & Manuela Tvaronavičienė, 2020. "Renewable Energy in Final Energy Consumption and Income in the EU-28 Countries," Energies, MDPI, vol. 13(9), pages 1-18, May.
    10. Karakurt, Izzet & Aydin, Gokhan, 2023. "Development of regression models to forecast the CO2 emissions from fossil fuels in the BRICS and MINT countries," Energy, Elsevier, vol. 263(PA).
    11. Karakurt, Izzet, 2021. "Modelling and forecasting the oil consumptions of the BRICS-T countries," Energy, Elsevier, vol. 220(C).
    12. Mihaela Simionescu & Carmen Beatrice Păuna & Tiberiu Diaconescu, 2020. "Renewable Energy and Economic Performance in the Context of the European Green Deal," Energies, MDPI, vol. 13(23), pages 1-19, December.
    13. Feride OZTURK & Suat OZTURK, 2018. "Exploring the Nexus of Coal Consumption, Economic Growth, Energy Prices and Technological Innovation in Turkey," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 8(12), pages 1406-1414, December.
    14. Mihaela Simionescu & Yuriy Bilan & Emília Krajňáková & Dalia Streimikiene & Stanisław Gędek, 2019. "Renewable Energy in the Electricity Sector and GDP per Capita in the European Union," Energies, MDPI, vol. 12(13), pages 1-15, June.
    15. Wang, Qiang & Li, Shuyu & Li, Rongrong, 2018. "China's dependency on foreign oil will exceed 80% by 2030: Developing a novel NMGM-ARIMA to forecast China's foreign oil dependence from two dimensions," Energy, Elsevier, vol. 163(C), pages 151-167.
    16. Irina A. Firsova & Dinara G. Vasbieva & Nikolay N. Kosarenko & Maria A. Khvatova & Lev R. Klebanov, 2019. "Energy Consumption Forecasting for Power Supply Companies," International Journal of Energy Economics and Policy, Econjournals, vol. 9(1), pages 1-6.
    17. Salvatore Carta & Andrea Medda & Alessio Pili & Diego Reforgiato Recupero & Roberto Saia, 2018. "Forecasting E-Commerce Products Prices by Combining an Autoregressive Integrated Moving Average (ARIMA) Model and Google Trends Data," Future Internet, MDPI, vol. 11(1), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:asi:joasrj:v:8:y:2018:i:2:p:52-60:id:3874. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Robert Allen (email available below). General contact details of provider: https://archive.aessweb.com/index.php/5003/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.