IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v34y2006i17p3165-3172.html
   My bibliography  Save this article

Use of artificial neural networks for transport energy demand modeling

Author

Listed:
  • Murat, Yetis Sazi
  • Ceylan, Halim

Abstract

No abstract is available for this item.

Suggested Citation

  • Murat, Yetis Sazi & Ceylan, Halim, 2006. "Use of artificial neural networks for transport energy demand modeling," Energy Policy, Elsevier, vol. 34(17), pages 3165-3172, November.
  • Handle: RePEc:eee:enepol:v:34:y:2006:i:17:p:3165-3172
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(05)00069-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hunt, Lester C. & Judge, Guy & Ninomiya, Yasushi, 2003. "Underlying trends and seasonality in UK energy demand: a sectoral analysis," Energy Economics, Elsevier, vol. 25(1), pages 93-118, January.
    2. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    3. Haldenbilen, Soner & Ceylan, Halim, 2005. "Genetic algorithm approach to estimate transport energy demand in Turkey," Energy Policy, Elsevier, vol. 33(1), pages 89-98, January.
    4. Wohlgemuth, Norbert, 1997. "World transport energy demand modelling : Methodology and elasticities," Energy Policy, Elsevier, vol. 25(14-15), pages 1109-1119, December.
    5. Kalogirou, Soteris A. & Bojic, Milorad, 2000. "Artificial neural networks for the prediction of the energy consumption of a passive solar building," Energy, Elsevier, vol. 25(5), pages 479-491.
    6. Ozturk, Harun Kemal & Ceylan, Halim & Canyurt, Olcay Ersel & Hepbasli, Arif, 2005. "Electricity estimation using genetic algorithm approach: a case study of Turkey," Energy, Elsevier, vol. 30(7), pages 1003-1012.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    2. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    3. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    4. Huang, Chung-Neng & Chen, Yui-Sung, 2017. "Design of magnetic flywheel control for performance improvement of fuel cells used in vehicles," Energy, Elsevier, vol. 118(C), pages 840-852.
    5. Haldenbilen, Soner, 2006. "Fuel price determination in transportation sector using predicted energy and transport demand," Energy Policy, Elsevier, vol. 34(17), pages 3078-3086, November.
    6. Erdogdu, Erkan, 2010. "Natural gas demand in Turkey," Applied Energy, Elsevier, vol. 87(1), pages 211-219, January.
    7. Manuel Llorca & José Baños & José Somoza & Pelayo Arbués, 2017. "A Stochastic Frontier Analysis Approach for Estimating Energy Demand and Efficiency in the Transport Sector of Latin America and the Caribbean," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
    8. Tehreem Fatima & Enjun Xia & Muhammad Ahad, 2019. "Oil demand forecasting for China: a fresh evidence from structural time series analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(3), pages 1205-1224, June.
    9. Jebaraj, S. & Iniyan, S., 2006. "A review of energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 281-311, August.
    10. Aydin, Gokhan, 2014. "Modeling of energy consumption based on economic and demographic factors: The case of Turkey with projections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 382-389.
    11. Llorca, Manuel & Baños, José & Somoza, José & Arbués, Pelayo, 2014. "A latent class approach for estimating energy demands and efficiency in transport: An application to Latin America and the Caribbean," Efficiency Series Papers 2014/04, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    12. Dilaver, Zafer & Hunt, Lester C., 2011. "Industrial electricity demand for Turkey: A structural time series analysis," Energy Economics, Elsevier, vol. 33(3), pages 426-436, May.
    13. Kankal, Murat & AkpInar, Adem & Kömürcü, Murat Ihsan & Özsahin, Talat Sükrü, 2011. "Modeling and forecasting of Turkey's energy consumption using socio-economic and demographic variables," Applied Energy, Elsevier, vol. 88(5), pages 1927-1939, May.
    14. Zhijian Liu & Hao Li & Guoqing Cao, 2017. "Quick Estimation Model for the Concentration of Indoor Airborne Culturable Bacteria: An Application of Machine Learning," IJERPH, MDPI, vol. 14(8), pages 1-9, July.
    15. Niemierko, Rochus & Töppel, Jannick & Tränkler, Timm, 2019. "A D-vine copula quantile regression approach for the prediction of residential heating energy consumption based on historical data," Applied Energy, Elsevier, vol. 233, pages 691-708.
    16. Ceylan, Huseyin & Ceylan, Halim & Haldenbilen, Soner & Baskan, Ozgur, 2008. "Transport energy modeling with meta-heuristic harmony search algorithm, an application to Turkey," Energy Policy, Elsevier, vol. 36(7), pages 2527-2535, July.
    17. Harish Kumar Ghritlahre & Purvi Chandrakar & Ashfaque Ahmad, 2021. "A Comprehensive Review on Performance Prediction of Solar Air Heaters Using Artificial Neural Network," Annals of Data Science, Springer, vol. 8(3), pages 405-449, September.
    18. Ünler, Alper, 2008. "Improvement of energy demand forecasts using swarm intelligence: The case of Turkey with projections to 2025," Energy Policy, Elsevier, vol. 36(6), pages 1937-1944, June.
    19. Mohanraj, M. & Jayaraj, S. & Muraleedharan, C., 2012. "Applications of artificial neural networks for refrigeration, air-conditioning and heat pump systems—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1340-1358.
    20. Li, Zheng & Rose, John M. & Hensher, David A., 2010. "Forecasting automobile petrol demand in Australia: An evaluation of empirical models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(1), pages 16-38, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:34:y:2006:i:17:p:3165-3172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.