IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v313y2022i1d10.1007_s10479-020-03680-y.html
   My bibliography  Save this article

Financial modelling, risk management of energy instruments and the role of cryptocurrencies

Author

Listed:
  • Toan Luu Duc Huynh

    (University of Economics Ho Chi Minh City
    WHU – Otto Beisheim School of Management)

  • Muhammad Shahbaz

    (Beijing Institute of Technology
    University of Cambridge)

  • Muhammad Ali Nasir

    (University of Economics Ho Chi Minh City
    Leeds Beckett University)

  • Subhan Ullah

    (University of Nottingham)

Abstract

This paper empirically investigates whether cryptocurrencies might have a useful role in financial modelling and risk management in the energy markets. To do so, the causal relationship between movements on the energy markets (specifically the price of crude oil) and the value of cryptocurrencies is analysed by drawing on daily data from April 2013 to April 2019. We find that shocks to the US and European crude oil indices are strongly connected to the movements of most cryptocurrencies. Applying a non-parametric statistic, Transferring Entropy (an econophysics technique measuring information flow), we find that some cryptocurrencies (XEM, DOGE, VTC, XLM, USDT, XRP) can be used for hedging and portfolio diversification. Furthermore, the results reveal that the European crude oil index is a source of shocks on the cryptocurrency market while the US oil index appears to be a receiver of shocks.

Suggested Citation

  • Toan Luu Duc Huynh & Muhammad Shahbaz & Muhammad Ali Nasir & Subhan Ullah, 2022. "Financial modelling, risk management of energy instruments and the role of cryptocurrencies," Annals of Operations Research, Springer, vol. 313(1), pages 47-75, June.
  • Handle: RePEc:spr:annopr:v:313:y:2022:i:1:d:10.1007_s10479-020-03680-y
    DOI: 10.1007/s10479-020-03680-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-020-03680-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-020-03680-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reboredo, Juan C., 2012. "Modelling oil price and exchange rate co-movements," Journal of Policy Modeling, Elsevier, vol. 34(3), pages 419-440.
    2. Granger, C. W. J., 1988. "Causality, cointegration, and control," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 551-559.
    3. Coudert, Virginie & Mignon, Valérie, 2016. "Reassessing the empirical relationship between the oil price and the dollar," Energy Policy, Elsevier, vol. 95(C), pages 147-157.
    4. Corsi, Fulvio & Pirino, Davide & Renò, Roberto, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Journal of Econometrics, Elsevier, vol. 159(2), pages 276-288, December.
    5. Gong, Xu & Lin, Boqiang, 2018. "The incremental information content of investor fear gauge for volatility forecasting in the crude oil futures market," Energy Economics, Elsevier, vol. 74(C), pages 370-386.
    6. Jinkyu Kim & Gunn Kim & Sungbae An & Young-Kyun Kwon & Sungroh Yoon, 2013. "Entropy-Based Analysis and Bioinformatics-Inspired Integration of Global Economic Information Transfer," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-10, January.
    7. Jin, Xiaoye & Xiaowen Lin, Sharon & Tamvakis, Michael, 2012. "Volatility transmission and volatility impulse response functions in crude oil markets," Energy Economics, Elsevier, vol. 34(6), pages 2125-2134.
    8. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    9. Haugom, Erik & Langeland, Henrik & Molnár, Peter & Westgaard, Sjur, 2014. "Forecasting volatility of the U.S. oil market," Journal of Banking & Finance, Elsevier, vol. 47(C), pages 1-14.
    10. Mr. Sebastian Sosa & Gustavo Adler, 2011. "Commodity Price Cycles: The Perils of Mismanaging the Boom," IMF Working Papers 2011/283, International Monetary Fund.
    11. Robert B. Barsky & Lutz Kilian, 2004. "Oil and the Macroeconomy Since the 1970s," Journal of Economic Perspectives, American Economic Association, vol. 18(4), pages 115-134, Fall.
    12. Ciaian, Pavel & Rajcaniova, Miroslava & Kancs, d'Artis, 2018. "Virtual relationships: Short- and long-run evidence from BitCoin and altcoin markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 52(C), pages 173-195.
    13. Tian, Fengping & Yang, Ke & Chen, Langnan, 2017. "Realized volatility forecasting of agricultural commodity futures using the HAR model with time-varying sparsity," International Journal of Forecasting, Elsevier, vol. 33(1), pages 132-152.
    14. Stavros Degiannakis, 2008. "ARFIMAX and ARFIMAX-TARCH realized volatility modeling," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(10), pages 1169-1180.
    15. Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," Journal of International Money and Finance, Elsevier, vol. 76(C), pages 28-49.
    16. Wen, Fenghua & Gong, Xu & Cai, Shenghua, 2016. "Forecasting the volatility of crude oil futures using HAR-type models with structural breaks," Energy Economics, Elsevier, vol. 59(C), pages 400-413.
    17. Sensoy, Ahmet, 2019. "The inefficiency of Bitcoin revisited: A high-frequency analysis with alternative currencies," Finance Research Letters, Elsevier, vol. 28(C), pages 68-73.
    18. Liu, Tangyong & Gong, Xu, 2020. "Analyzing time-varying volatility spillovers between the crude oil markets using a new method," Energy Economics, Elsevier, vol. 87(C).
    19. Selmi, Refk & Mensi, Walid & Hammoudeh, Shawkat & Bouoiyour, Jamal, 2018. "Is Bitcoin a hedge, a safe haven or a diversifier for oil price movements? A comparison with gold," Energy Economics, Elsevier, vol. 74(C), pages 787-801.
    20. Koutmos, Dimitrios, 2018. "Return and volatility spillovers among cryptocurrencies," Economics Letters, Elsevier, vol. 173(C), pages 122-127.
    21. repec:ipg:wpaper:2014-569 is not listed on IDEAS
    22. Narjes Zamani, 2016. "How the Crude Oil Market Affects the Natural Gas Market? Demand and Supply Shocks," International Journal of Energy Economics and Policy, Econjournals, vol. 6(2), pages 217-221.
    23. Bekaert, Geert & Hoerova, Marie, 2014. "The VIX, the variance premium and stock market volatility," Journal of Econometrics, Elsevier, vol. 183(2), pages 181-192.
    24. Yan‐ran Ma & Qiang Ji & Jiaofeng Pan, 2019. "Oil financialization and volatility forecast: Evidence from multidimensional predictors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(6), pages 564-581, September.
    25. Hamilton, James D., 2003. "What is an oil shock?," Journal of Econometrics, Elsevier, vol. 113(2), pages 363-398, April.
    26. Ma, Feng & Liu, Jing & Huang, Dengshi & Chen, Wang, 2017. "Forecasting the oil futures price volatility: A new approach," Economic Modelling, Elsevier, vol. 64(C), pages 560-566.
    27. John Elder & Apostolos Serletis, 2010. "Oil Price Uncertainty," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(6), pages 1137-1159, September.
    28. Atil, Ahmed & Lahiani, Amine & Nguyen, Duc Khuong, 2014. "Asymmetric and nonlinear pass-through of crude oil prices to gasoline and natural gas prices," Energy Policy, Elsevier, vol. 65(C), pages 567-573.
    29. Okyu Kwon & Jae-Suk Yang, 2008. "Information flow between stock indices," Papers 0802.1747, arXiv.org.
    30. Jadidzadeh, Ali & Serletis, Apostolos, 2017. "How does the U.S. natural gas market react to demand and supply shocks in the crude oil market?," Energy Economics, Elsevier, vol. 63(C), pages 66-74.
    31. Kunkler, Michael & MacDonald, Ronald, 2019. "The multilateral relationship between oil and G10 currencies," Energy Economics, Elsevier, vol. 78(C), pages 444-453.
    32. Corbet, Shaen & Meegan, Andrew & Larkin, Charles & Lucey, Brian & Yarovaya, Larisa, 2018. "Exploring the dynamic relationships between cryptocurrencies and other financial assets," Economics Letters, Elsevier, vol. 165(C), pages 28-34.
    33. Helena Chuliá, Dolores Furió, and Jorge M. Uribe, 2019. "Volatility Spillovers in Energy Markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    34. Apostolos Serletis & Ricardo Rangel-Ruiz, 2007. "Testing for Common Features in North American Energy Markets," World Scientific Book Chapters, in: Quantitative And Empirical Analysis Of Energy Markets, chapter 14, pages 172-187, World Scientific Publishing Co. Pte. Ltd..
    35. Lizardo, Radhamés A. & Mollick, André V., 2010. "Oil price fluctuations and U.S. dollar exchange rates," Energy Economics, Elsevier, vol. 32(2), pages 399-408, March.
    36. Lutz Kilian & Cheolbeom Park, 2009. "The Impact Of Oil Price Shocks On The U.S. Stock Market," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(4), pages 1267-1287, November.
    37. Jian-Lin Jiao & Ying Fan & Yi-Ming Wei & Zhi-Yong Han & Jiu-Tian Zhang, 2007. "Analysis of the co-movement between Chinese and international crude oil price," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 27(1), pages 61-76.
    38. Urquhart, Andrew, 2016. "The inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 148(C), pages 80-82.
    39. Giudici, Paolo & Abu-Hashish, Iman, 2019. "What determines bitcoin exchange prices? A network VAR approach," Finance Research Letters, Elsevier, vol. 28(C), pages 309-318.
    40. Bariviera, Aurelio F., 2017. "The inefficiency of Bitcoin revisited: A dynamic approach," Economics Letters, Elsevier, vol. 161(C), pages 1-4.
    41. Xu Gong & Boqiang Lin, 2018. "Structural breaks and volatility forecasting in the copper futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(3), pages 290-339, March.
    42. Jozef Baruník & Evžen KoÄ enda, 2019. "Total, Asymmetric and Frequency Connectedness between Oil and Forex Markets," The Energy Journal, , vol. 40(2_suppl), pages 157-174, December.
    43. Sadorsky, Perry, 2012. "Correlations and volatility spillovers between oil prices and the stock prices of clean energy and technology companies," Energy Economics, Elsevier, vol. 34(1), pages 248-255.
    44. Nathan S. Balke & Stephen P.A. Brown & Mine K. Yucel, 2002. "Oil Price Shocks and the U.S. Economy: Where Does the Asymmetry Originate?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 27-52.
    45. Liu, Jing & Wei, Yu & Ma, Feng & Wahab, M.I.M., 2017. "Forecasting the realized range-based volatility using dynamic model averaging approach," Economic Modelling, Elsevier, vol. 61(C), pages 12-26.
    46. Stephen P.A. Brown & Mine K. Yücel, 2008. "What Drives Natural Gas Prices?," The Energy Journal, , vol. 29(2), pages 45-60, April.
    47. Chen, K.C. & Chen, Shaoling & Wu, Lifan, 2009. "Price causal relations between China and the world oil markets," Global Finance Journal, Elsevier, vol. 20(2), pages 107-118.
    48. Lin, Sharon Xiaowen & Tamvakis, Michael N., 2001. "Spillover effects in energy futures markets," Energy Economics, Elsevier, vol. 23(1), pages 43-56, January.
    49. Jin, Jingyu & Yu, Jiang & Hu, Yang & Shang, Yue, 2019. "Which one is more informative in determining price movements of hedging assets? Evidence from Bitcoin, gold and crude oil markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    50. Asche, Frank & Gjolberg, Ole & Volker, Teresa, 2003. "Price relationships in the petroleum market: an analysis of crude oil and refined product prices," Energy Economics, Elsevier, vol. 25(3), pages 289-301, May.
    51. Shahbaz, Muhammad & Nasir, Muhammad Ali & Roubaud, David, 2018. "Environmental degradation in France: The effects of FDI, financial development, and energy innovations," Energy Economics, Elsevier, vol. 74(C), pages 843-857.
    52. Blau, Benjamin M., 2018. "Price dynamics and speculative trading in Bitcoin," Research in International Business and Finance, Elsevier, vol. 43(C), pages 15-21.
    53. Don Bredin & John Elder & Stilianos Fountas, 2010. "The Effects of Uncertainty about Oil Prices in G-7," Working Papers 200840, Geary Institute, University College Dublin.
    54. Paul Krugman, 1983. "Oil Shocks and Exchange Rate Dynamics," NBER Chapters, in: Exchange Rates and International Macroeconomics, pages 259-284, National Bureau of Economic Research, Inc.
    55. Bouri, Elie & Molnár, Peter & Azzi, Georges & Roubaud, David & Hagfors, Lars Ivar, 2017. "On the hedge and safe haven properties of Bitcoin: Is it really more than a diversifier?," Finance Research Letters, Elsevier, vol. 20(C), pages 192-198.
    56. Lanza, Alessandro & Manera, Matteo & Giovannini, Massimo, 2005. "Modeling and forecasting cointegrated relationships among heavy oil and product prices," Energy Economics, Elsevier, vol. 27(6), pages 831-848, November.
    57. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2016. "Exploiting the errors: A simple approach for improved volatility forecasting," Journal of Econometrics, Elsevier, vol. 192(1), pages 1-18.
    58. Apostolos Serletis, 2007. "A Cointegration Analysis of Petroleum Futures Prices," World Scientific Book Chapters, in: Quantitative And Empirical Analysis Of Energy Markets, chapter 5, pages 46-54, World Scientific Publishing Co. Pte. Ltd..
    59. Gong, Xu & Lin, Boqiang, 2017. "Forecasting the good and bad uncertainties of crude oil prices using a HAR framework," Energy Economics, Elsevier, vol. 67(C), pages 315-327.
    60. Symitsi, Efthymia & Chalvatzis, Konstantinos J., 2018. "Return, volatility and shock spillovers of Bitcoin with energy and technology companies," Economics Letters, Elsevier, vol. 170(C), pages 127-130.
    61. Symitsi, Efthymia & Chalvatzis, Konstantinos J., 2019. "The economic value of Bitcoin: A portfolio analysis of currencies, gold, oil and stocks," Research in International Business and Finance, Elsevier, vol. 48(C), pages 97-110.
    62. Kwon, Okyu & Yang, Jae-Suk, 2008. "Information flow between composite stock index and individual stocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2851-2856.
    63. Phan, Dinh Hoang Bach & Sharma, Susan Sunila & Narayan, Paresh Kumar, 2016. "Intraday volatility interaction between the crude oil and equity markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 40(C), pages 1-13.
    64. repec:hal:journl:peer-00741630 is not listed on IDEAS
    65. Balcilar, Mehmet & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2017. "Can volume predict Bitcoin returns and volatility? A quantiles-based approach," Economic Modelling, Elsevier, vol. 64(C), pages 74-81.
    66. Seung Ki Baek & Woo-Sung Jung & Okyu Kwon & Hie-Tae Moon, 2005. "Transfer Entropy Analysis of the Stock Market," Papers physics/0509014, arXiv.org, revised Sep 2005.
    67. Pieters, Gina & Vivanco, Sofia, 2017. "Financial regulations and price inconsistencies across Bitcoin markets," Information Economics and Policy, Elsevier, vol. 39(C), pages 1-14.
    68. Nadarajah, Saralees & Chu, Jeffrey, 2017. "On the inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 150(C), pages 6-9.
    69. Jiang, Yonghong & Nie, He & Ruan, Weihua, 2018. "Time-varying long-term memory in Bitcoin market," Finance Research Letters, Elsevier, vol. 25(C), pages 280-284.
    70. Brigida, Matthew, 2014. "The switching relationship between natural gas and crude oil prices," Energy Economics, Elsevier, vol. 43(C), pages 48-55.
    71. Aloui, Riadh & Ben Aïssa, Mohamed Safouane & Nguyen, Duc Khuong, 2013. "Conditional dependence structure between oil prices and exchange rates: A copula-GARCH approach," Journal of International Money and Finance, Elsevier, vol. 32(C), pages 719-738.
    72. Gjolberg, Ole & Johnsen, Thore, 1999. "Risk management in the oil industry: can information on long-run equilibrium prices be utilized?," Energy Economics, Elsevier, vol. 21(6), pages 517-527, December.
    73. Soojin Jo, 2014. "The Effects of Oil Price Uncertainty on Global Real Economic Activity," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 46(6), pages 1113-1135, September.
    74. Adrangi, Bahram & Chatrath, Arjun & Raffiee, Kambiz & D. Ripple, Ronald, 2001. "Alaska North Slope crude oil price and the behavior of diesel prices in California," Energy Economics, Elsevier, vol. 23(1), pages 29-42, January.
    75. Lance J. Bachmeier & James M. Griffin, 2006. "Testing for Market Integration: Crude Oil, Coal, and Natural Gas," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 55-72.
    76. Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
    77. Dyhrberg, Anne Haubo, 2016. "Bitcoin, gold and the dollar – A GARCH volatility analysis," Finance Research Letters, Elsevier, vol. 16(C), pages 85-92.
    78. Sévi, Benoît, 2014. "Forecasting the volatility of crude oil futures using intraday data," European Journal of Operational Research, Elsevier, vol. 235(3), pages 643-659.
    79. Liu, Qingfu & Tu, Anthony H., 2012. "Jump spillovers in energy futures markets: Implications for diversification benefits," Energy Economics, Elsevier, vol. 34(5), pages 1447-1464.
    80. Michel Rauchs & Garrick Hileman, 2017. "Global Cryptocurrency Benchmarking Study," Cambridge Centre for Alternative Finance Reports 201704-gcbs, Cambridge Centre for Alternative Finance, Cambridge Judge Business School, University of Cambridge.
    81. Rainer Böhme & Nicolas Christin & Benjamin Edelman & Tyler Moore, 2015. "Bitcoin: Economics, Technology, and Governance," Journal of Economic Perspectives, American Economic Association, vol. 29(2), pages 213-238, Spring.
    82. Chen, Shiu-Sheng & Chen, Hung-Chyn, 2007. "Oil prices and real exchange rates," Energy Economics, Elsevier, vol. 29(3), pages 390-404, May.
    83. Marcel Prokopczuk & Lazaros Symeonidis & Chardin Wese Simen, 2016. "Do Jumps Matter for Volatility Forecasting? Evidence from Energy Markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(8), pages 758-792, August.
    84. Gronwald, Marc, 2019. "Is Bitcoin a Commodity? On price jumps, demand shocks, and certainty of supply," Journal of International Money and Finance, Elsevier, vol. 97(C), pages 86-92.
    85. Duong, Diep & Swanson, Norman R., 2015. "Empirical evidence on the importance of aggregation, asymmetry, and jumps for volatility prediction," Journal of Econometrics, Elsevier, vol. 187(2), pages 606-621.
    86. Wang, Yudong & Ma, Feng & Wei, Yu & Wu, Chongfeng, 2016. "Forecasting realized volatility in a changing world: A dynamic model averaging approach," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 136-149.
    87. Reboredo, Juan Carlos & Rivera-Castro, Miguel A. & Zebende, Gilney F., 2014. "Oil and US dollar exchange rate dependence: A detrended cross-correlation approach," Energy Economics, Elsevier, vol. 42(C), pages 132-139.
    88. Baur, Dirk G. & Hong, KiHoon & Lee, Adrian D., 2018. "Bitcoin: Medium of exchange or speculative assets?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 54(C), pages 177-189.
    89. Gajardo, Gabriel & Kristjanpoller, Werner D. & Minutolo, Marcel, 2018. "Does Bitcoin exhibit the same asymmetric multifractal cross-correlations with crude oil, gold and DJIA as the Euro, Great British Pound and Yen?," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 195-205.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin Chen & Yue Chen & Wei Zhou, 2024. "Relation exploration between clean and fossil energy markets when experiencing climate change uncertainties: substitutes or complements?," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-17, December.
    2. Akhtaruzzaman, Md & Banerjee, Ameet Kumar & Boubaker, Sabri & Moussa, Faten, 2023. "Does green improve portfolio optimisation?," Energy Economics, Elsevier, vol. 124(C).
    3. Zaheer Abbas & Seunghwan Myeong, 2024. "A Comprehensive Study of Blockchain Technology and Its Role in Promoting Sustainability and Circularity across Large-Scale Industry," Sustainability, MDPI, vol. 16(10), pages 1-33, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yixiang & Ma, Feng & Zhang, Yaojie, 2019. "Good, bad cojumps and volatility forecasting: New evidence from crude oil and the U.S. stock markets," Energy Economics, Elsevier, vol. 81(C), pages 52-62.
    2. Ma, Feng & Zhang, Yaojie & Huang, Dengshi & Lai, Xiaodong, 2018. "Forecasting oil futures price volatility: New evidence from realized range-based volatility," Energy Economics, Elsevier, vol. 75(C), pages 400-409.
    3. Symitsi, Efthymia & Chalvatzis, Konstantinos J., 2019. "The economic value of Bitcoin: A portfolio analysis of currencies, gold, oil and stocks," Research in International Business and Finance, Elsevier, vol. 48(C), pages 97-110.
    4. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    5. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    6. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    7. Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
    8. Chen, Wang & Ma, Feng & Wei, Yu & Liu, Jing, 2020. "Forecasting oil price volatility using high-frequency data: New evidence," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 1-12.
    9. Parthajit Kayal & Purnima Rohilla, 2021. "Bitcoin in the economics and finance literature: a survey," SN Business & Economics, Springer, vol. 1(7), pages 1-21, July.
    10. Ma, Feng & Wahab, M.I.M. & Huang, Dengshi & Xu, Weiju, 2017. "Forecasting the realized volatility of the oil futures market: A regime switching approach," Energy Economics, Elsevier, vol. 67(C), pages 136-145.
    11. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Gabauer, David, 2019. "Cryptocurrency market contagion: Market uncertainty, market complexity, and dynamic portfolios," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 61(C), pages 37-51.
    12. Liu, Jing & Ma, Feng & Yang, Ke & Zhang, Yaojie, 2018. "Forecasting the oil futures price volatility: Large jumps and small jumps," Energy Economics, Elsevier, vol. 72(C), pages 321-330.
    13. Besma Hkiri & Juncal Cunado & Mehmet Balcilar & Rangan Gupta, 2021. "Time-varying relationship between conventional and unconventional monetary policies and risk aversion: international evidence from time- and frequency-domains," Empirical Economics, Springer, vol. 61(6), pages 2963-2983, December.
    14. Gong, Xu & Lin, Boqiang, 2018. "The incremental information content of investor fear gauge for volatility forecasting in the crude oil futures market," Energy Economics, Elsevier, vol. 74(C), pages 370-386.
    15. Mei, Dexiang & Ma, Feng & Liao, Yin & Wang, Lu, 2020. "Geopolitical risk uncertainty and oil future volatility: Evidence from MIDAS models," Energy Economics, Elsevier, vol. 86(C).
    16. ORĂȘTEAN Ramona & MĂRGINEAN Silvia Cristina & SAVA Raluca, 2019. "Bitcoin In The Scientific Literature – A Bibliometric Study," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 14(3), pages 160-174, December.
    17. Dehua Shen & Andrew Urquhart & Pengfei Wang, 2020. "Forecasting the volatility of Bitcoin: The importance of jumps and structural breaks," European Financial Management, European Financial Management Association, vol. 26(5), pages 1294-1323, November.
    18. Chu, Jeffrey & Chan, Stephen & Zhang, Yuanyuan, 2021. "Bitcoin versus high-performance technology stocks in diversifying against global stock market indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    19. Helder Miguel Correia Virtuoso Sebastião & Paulo José Osório Rupino Da Cunha & Pedro Manuel Cortesão Godinho, 2021. "Cryptocurrencies and blockchain. Overview and future perspectives," International Journal of Economics and Business Research, Inderscience Enterprises Ltd, vol. 21(3), pages 305-342.
    20. Caporale, Guglielmo Maria & Kang, Woo-Young & Spagnolo, Fabio & Spagnolo, Nicola, 2021. "Cyber-attacks, spillovers and contagion in the cryptocurrency markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).

    More about this item

    Keywords

    Energy markets; Risk management; Crude oil; Cryptocurrency; Transfer entropy; Financial instruments;
    All these keywords.

    JEL classification:

    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • G18 - Financial Economics - - General Financial Markets - - - Government Policy and Regulation
    • O32 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Management of Technological Innovation and R&D
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:313:y:2022:i:1:d:10.1007_s10479-020-03680-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.