IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i10p4232-d1396829.html
   My bibliography  Save this article

A Comprehensive Study of Blockchain Technology and Its Role in Promoting Sustainability and Circularity across Large-Scale Industry

Author

Listed:
  • Zaheer Abbas

    (Center of Security Convergence & eGovernance, Inha University, Incheon 22212, Republic of Korea)

  • Seunghwan Myeong

    (Department of Public Administration, Inha University, Incheon 22212, Republic of Korea)

Abstract

Blockchain technology has evolved as an innovative strategy that substantially transformed industries by offering a variety of applications across multiple domains including manufacturing, construction, supply chain, food, health, energy, transport and retailing industry. By offering a decentralized ledger that enables the source-tracking of materials and goods, blockchain enables a quick, safe, and open information platform. Blockchain is emerging around the globe in industries but limited studies have comprehensively examined its practical implementation toward industrial sustainability and circularity. This paper aimed to provide a comprehensive and thoughtful discussion of blockchain demand, literature gaps in blockchain implementation, type of blockchain platforms in large-scale industries and their contribution toward sustainability by utilizing the systematic literature review methodology. The descriptive analysis of 185 selected articles by thematic analysis provides an overview of the emergence of blockchain over the years and its practical implications in large-scale industries. The novelty of the paper is the in-depth discussion of the major industries of the various sectors that are utilizing different blockchain frameworks, especially P2P, in order to achieve sustainability and circularity in economy. Furthermore, the challenges and barriers that hinder blockchain adoption have also been evaluated.

Suggested Citation

  • Zaheer Abbas & Seunghwan Myeong, 2024. "A Comprehensive Study of Blockchain Technology and Its Role in Promoting Sustainability and Circularity across Large-Scale Industry," Sustainability, MDPI, vol. 16(10), pages 1-33, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:4232-:d:1396829
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/10/4232/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/10/4232/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elheddad, Mohamed & Benjasak, Chonlakan & Deljavan, Rana & Alharthi, Majed & Almabrok, Jaballa M., 2021. "The effect of the Fourth Industrial Revolution on the environment: The relationship between electronic finance and pollution in OECD countries," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    2. Choi, Tsan-Ming & Chen, Yue, 2021. "Circular supply chain management with large scale group decision making in the big data era: The macro-micro model," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    3. Chauhan, Chetna & Parida, Vinit & Dhir, Amandeep, 2022. "Linking circular economy and digitalisation technologies: A systematic literature review of past achievements and future promises," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    4. Thomas K. Dasaklis & Theodore G. Voutsinas & Giannis T. Tsoulfas & Fran Casino, 2022. "A Systematic Literature Review of Blockchain-Enabled Supply Chain Traceability Implementations," Sustainability, MDPI, vol. 14(4), pages 1-30, February.
    5. Broccardo, Laura & Zicari, Adrián & Jabeen, Fauzia & Bhatti, Zeeshan A., 2023. "How digitalization supports a sustainable business model: A literature review," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    6. McDaniel, Christine & Norberg, Hanna, 2019. "Can Blockchain Technology Facilitate International Trade?," Annals of Computational Economics, George Mason University, Mercatus Center, April.
    7. Atul Kumar Singh & V. R. Prasath Kumar & Muhammad Irfan & Saeed Reza Mohandes & Usama Awan, 2023. "Revealing the Barriers of Blockchain Technology for Supply Chain Transparency and Sustainability in the Construction Industry: An Application of Pythagorean FAHP Methods," Sustainability, MDPI, vol. 15(13), pages 1-27, July.
    8. Korhonen, Jouni & Honkasalo, Antero & Seppälä, Jyri, 2018. "Circular Economy: The Concept and its Limitations," Ecological Economics, Elsevier, vol. 143(C), pages 37-46.
    9. Jesse Yli-Huumo & Deokyoon Ko & Sujin Choi & Sooyong Park & Kari Smolander, 2016. "Where Is Current Research on Blockchain Technology?—A Systematic Review," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-27, October.
    10. Kouhizadeh, Mahtab & Saberi, Sara & Sarkis, Joseph, 2021. "Blockchain technology and the sustainable supply chain: Theoretically exploring adoption barriers," International Journal of Production Economics, Elsevier, vol. 231(C).
    11. Casey Watters, 2023. "When Criminals Abuse the Blockchain: Establishing Personal Jurisdiction in a Decentralised Environment," Laws, MDPI, vol. 12(2), pages 1-16, April.
    12. Danish, & Ulucak, Recep & Baloch, Muhammad Awais, 2023. "An empirical approach to the nexus between natural resources and environmental pollution: Do economic policy and environmental-related technologies make any difference?," Resources Policy, Elsevier, vol. 81(C).
    13. Sabine Weiland & Thomas Hickmann & Markus Lederer & Jens Marquardt & Sandra Schwindenhammer, 2021. "The 2030 Agenda for Sustainable Development: Transformative Change through the Sustainable Development Goals?," Politics and Governance, Cogitatio Press, vol. 9(1), pages 90-95.
    14. Kshetri, Nir, 2017. "Blockchain's roles in strengthening cybersecurity and protecting privacy," Telecommunications Policy, Elsevier, vol. 41(10), pages 1027-1038.
    15. Kannan Govindan, 2022. "Tunneling the barriers of blockchain technology in remanufacturing for achieving sustainable development goals: A circular manufacturing perspective," Business Strategy and the Environment, Wiley Blackwell, vol. 31(8), pages 3769-3785, December.
    16. Wan, Yinglin & Gao, Yuchen & Hu, Yimei, 2022. "Blockchain application and collaborative innovation in the manufacturing industry: Based on the perspective of social trust," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    17. Toan Luu Duc Huynh & Muhammad Shahbaz & Muhammad Ali Nasir & Subhan Ullah, 2022. "Financial modelling, risk management of energy instruments and the role of cryptocurrencies," Annals of Operations Research, Springer, vol. 313(1), pages 47-75, June.
    18. Yildizbasi, Abdullah, 2021. "Blockchain and renewable energy: Integration challenges in circular economy era," Renewable Energy, Elsevier, vol. 176(C), pages 183-197.
    19. Lukman Adewale Ajao & James Agajo & Emmanuel Adewale Adedokun & Loveth Karngong, 2019. "Crypto Hash Algorithm-Based Blockchain Technology for Managing Decentralized Ledger Database in Oil and Gas Industry," J, MDPI, vol. 2(3), pages 1-26, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abderahman Rejeb & Karim Rejeb & John G. Keogh & Suhaiza Zailani, 2022. "Barriers to Blockchain Adoption in the Circular Economy: A Fuzzy Delphi and Best-Worst Approach," Sustainability, MDPI, vol. 14(6), pages 1-23, March.
    2. Niloofar Etemadi & Pieter Van Gelder & Fernanda Strozzi, 2021. "An ISM Modeling of Barriers for Blockchain/Distributed Ledger Technology Adoption in Supply Chains towards Cybersecurity," Sustainability, MDPI, vol. 13(9), pages 1-28, April.
    3. Rizzati, Massimiliano & Landoni, Matteo, 2024. "A systematic review of agent-based modelling in the circular economy: Insights towards a general model," Structural Change and Economic Dynamics, Elsevier, vol. 69(C), pages 617-631.
    4. Moritz Böhmecke‐Schwafert & Marie Wehinger & Robin Teigland, 2022. "Blockchain for the circular economy: Theorizing blockchain's role in the transition to a circular economy through an empirical investigation," Business Strategy and the Environment, Wiley Blackwell, vol. 31(8), pages 3786-3801, December.
    5. Charfeddine, Lanouar & Umlai, Mohamed, 2023. "ICT sector, digitization and environmental sustainability: A systematic review of the literature from 2000 to 2022," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    6. Arezoo Ghazanfari, 2023. "An Analysis of Circular Economy Literature at the Macro Level, with a Particular Focus on Energy Markets," Energies, MDPI, vol. 16(4), pages 1-24, February.
    7. Zhang Yu & Muhammad Umar & S. Abdul Rehman, 2022. "Adoption of technological innovation and recycling practices in automobile sector: under the Covid-19 pandemic," Operations Management Research, Springer, vol. 15(1), pages 298-306, June.
    8. Mohammadreza Akbari & John L. Hopkins, 2022. "Digital technologies as enablers of supply chain sustainability in an emerging economy," Operations Management Research, Springer, vol. 15(3), pages 689-710, December.
    9. Ma, Chao-Qun & Lei, Yu-Tian & Ren, Yi-Shuai & Chen, Xun-Qi & Wang, Yi-Ran & Narayan, Seema, 2024. "Systematic analysis of the blockchain in the energy sector: Trends, issues, and future directions," Telecommunications Policy, Elsevier, vol. 48(2).
    10. Osei, Vivian & Bai, Chunguang & Asante-Darko, Disraeli & Quayson, Matthew, 2023. "Evaluating the barriers and drivers of adopting circular economy for improving sustainability in the mining industry," Resources Policy, Elsevier, vol. 86(PB).
    11. Kimani, Danson & Adams, Kweku & Attah-Boakye, Rexford & Ullah, Subhan & Frecknall-Hughes, Jane & Kim, Ja, 2020. "Blockchain, business and the fourth industrial revolution: Whence, whither, wherefore and how?," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    12. Huynh Evertsen, Phuc & Rasmussen, Einar & Nenadic, Oleg, 2022. "Commercializing circular economy innovations: A taxonomy of academic spin-offs," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    13. Ieva Meidute-Kavaliauskiene & Amir Karbassi Yazdi & Amir Mehdiabadi, 2022. "Integration of Blockchain Technology and Prioritization of Deployment Barriers in the Blood Supply Chain," Logistics, MDPI, vol. 6(1), pages 1-16, March.
    14. Chen Zhang & Yaoqun Xu & Yi Zheng, 2024. "Blockchain Traceability Adoption in Low-Carbon Supply Chains: An Evolutionary Game Analysis," Sustainability, MDPI, vol. 16(5), pages 1-23, February.
    15. Chunguang April Bai & James Cordeiro & Joseph Sarkis, 2022. "Blockchain for the environmentally sustainable enterprise," Business Strategy and the Environment, Wiley Blackwell, vol. 31(8), pages 3689-3692, December.
    16. Lei, Yu-Tian & Ma, Chao-Qun & Mirza, Nawazish & Ren, Yi-Shuai & Narayan, Seema Wati & Chen, Xun-Qi, 2022. "A renewable energy microgrids trading management platform based on permissioned blockchain," Energy Economics, Elsevier, vol. 115(C).
    17. Luoma, Päivi & Penttinen, Esko & Tapio, Petri & Toppinen, Anne, 2022. "Future images of data in circular economy for textiles," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    18. Jefferson Leandro Schmidt & Simone Sehnem & Juliano Danilo Spuldaro, 2024. "Blockchain and the transition to the circular economy: A literature review," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 31(3), pages 2010-2032, May.
    19. Su, Chi Wei & Yue, Peiwen & Hou, Xinmeng & Dördüncü, Hazar, 2023. "Sustainable development through digital innovation: A new era for natural resource extraction and trade," Resources Policy, Elsevier, vol. 85(PB).
    20. Bai, Chunguang & Sarkis, Joseph, 2022. "A critical review of formal analytical modeling for blockchain technology in production, operations, and supply chains: Harnessing progress for future potential," International Journal of Production Economics, Elsevier, vol. 250(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:4232-:d:1396829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.