IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v278y2019i1d10.1007_s10479-017-2497-0.html
   My bibliography  Save this article

Measuring productivity change accounting for adjustment costs: evidence from the food industry in the European Union

Author

Listed:
  • Magdalena Kapelko

    (Wroclaw University of Economics)

Abstract

This paper extends the measurement of dynamic productivity change over time to provide its full decomposition into economically meaningful components in the Data Envelopment Analysis framework. The dynamic approach accounts for dynamics of production decisions via adjustment costs and is visualized as a dynamic Luenberger productivity change indicator. The paper also estimates the dynamic productivity change and its components for a large dataset of European food companies from 2004 till 2012, grouped into Eastern, Southern, and Western regions. The study reveals three main results. First, the overall trend of dynamic technical regress and positive dynamic technical inefficiency change across almost all regions and sectors was found. Second, some differences for this general pattern were found for the bakery industry and for Eastern European firms. Thirdly, there are also some remarkable changes in indicators observed during the periods related to the financial crisis and the volatility of agricultural commodity prices.

Suggested Citation

  • Magdalena Kapelko, 2019. "Measuring productivity change accounting for adjustment costs: evidence from the food industry in the European Union," Annals of Operations Research, Springer, vol. 278(1), pages 215-234, July.
  • Handle: RePEc:spr:annopr:v:278:y:2019:i:1:d:10.1007_s10479-017-2497-0
    DOI: 10.1007/s10479-017-2497-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-017-2497-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-017-2497-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pinar Celikkol Geylani & Spiro Stefanou, 2011. "Productivity growth patterns in US dairy products manufacturing plants," Applied Economics, Taylor & Francis Journals, vol. 43(24), pages 3415-3432.
    2. Kao, Chiang, 2013. "Dynamic data envelopment analysis: A relational analysis," European Journal of Operational Research, Elsevier, vol. 227(2), pages 325-330.
    3. Stefanou, Spiro E. & Silva, Elvira, 2007. "AJAE Appendix: Dynamic Efficiency Measurement: Theory and Application," American Journal of Agricultural Economics APPENDICES, Agricultural and Applied Economics Association, vol. 89(2), pages 1-19, May.
    4. Treadway, Arthur B., 1970. "Adjustment costs and variable inputs in the theory of the competitive firm," Journal of Economic Theory, Elsevier, vol. 2(4), pages 329-347, December.
    5. Pierre Ouellette & Valérie Vierstraete, 2010. "Malmquist indexes with quasi-fixed inputs: an application to school districts in Québec," Annals of Operations Research, Springer, vol. 173(1), pages 57-76, January.
    6. Mukesh Kumar & Partha Basu, 2008. "Perspectives of productivity growth in Indian food industry: a data envelopment analysis," International Journal of Productivity and Performance Management, Emerald Group Publishing Limited, vol. 57(7), pages 503-522, September.
    7. Magdalena Kapelko & Alfons Oude Lansink & Spiro E. Stefanou, 2017. "The impact of the 2008 financial crisis on dynamic productivity growth of the Spanish food manufacturing industry. An impulse response analysis," Agricultural Economics, International Association of Agricultural Economists, vol. 48(5), pages 561-571, September.
    8. Catherine J. Morrison Paul, 2001. "Cost Economies And Market Power: The Case Of The U.S. Meat Packing Industry," The Review of Economics and Statistics, MIT Press, vol. 83(3), pages 531-540, August.
    9. Filadelfo Mateo & Tim Coelli & Chris O'Donnell, 2006. "Optimal Paths And Costs Of Adjustment In Dynamic DEA Models: With Application To Chilean Department Stores," Annals of Operations Research, Springer, vol. 145(1), pages 211-227, July.
    10. Hirofumi Fukuyama & William L. Weber, 2017. "Measuring bank performance with a dynamic network Luenberger indicator," Annals of Operations Research, Springer, vol. 250(1), pages 85-104, March.
    11. Catherine J. Morrison, 1997. "Structural Change, Capital Investment and Productivity in the Food Processing Industry," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 79(1), pages 110-125.
    12. Pastor, Jesus T. & Zofio, Jose L., 2017. "Can Farrell's allocative efficiency be generalized by the directional distance function approach?Author-Name: Aparicio, Juan," European Journal of Operational Research, Elsevier, vol. 257(1), pages 345-351.
    13. Requillart, Vincent & Nauges, Celine & Simioni, Michel & Bontemps, Christophe, 2012. "Food Safety Regulation and Firm Productivity: Evidence from the French Food Industry," 2012 First Congress, June 4-5, 2012, Trento, Italy 124378, Italian Association of Agricultural and Applied Economics (AIEAA).
    14. Walter Briec & K. Kerstens, 2009. "Infeasibilities and directional distance functions: with application to the determinateness of the luenberger productivity indicator," Post-Print hal-00372560, HAL.
    15. SIMAR, Léopold & WILSON, Paul W., 1998. "Productivity growth in industrialized countries," LIDAM Discussion Papers CORE 1998036, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. W. Briec & K. Kerstens, 2009. "Infeasibility and Directional Distance Functions with Application to the Determinateness of the Luenberger Productivity Indicator," Journal of Optimization Theory and Applications, Springer, vol. 141(1), pages 55-73, April.
    17. Steven Buccola & Fujii Yoko & Xia Yin, 2000. "Size and Productivity in the U.S. Milling and Baking Industries," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 82(4), pages 865-880.
    18. Jean‐Philippe Boussemart & Walter Briec & Kristiaan Kerstens & Jean‐Christophe Poutineau, 2003. "Luenberger and Malmquist Productivity Indices: Theoretical Comparisons and Empirical Illustration," Bulletin of Economic Research, Wiley Blackwell, vol. 55(4), pages 391-405, October.
    19. Wheelock, David C & Wilson, Paul W, 1999. "Technical Progress, Inefficiency, and Productivity Change in U.S. Banking, 1984-1993," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 31(2), pages 212-234, May.
    20. Aparicio, Juan & Pastor, Jesus T. & Vidal, Fernando, 2016. "The weighted additive distance function," European Journal of Operational Research, Elsevier, vol. 254(1), pages 338-346.
    21. Elvira Silva & Spiro Stefanou, 2003. "Nonparametric Dynamic Production Analysis and the Theory of Cost," Journal of Productivity Analysis, Springer, vol. 19(1), pages 5-32, January.
    22. Catherine J. Morrison Paul, 2001. "Market and Cost Structure in the U.S. Beef Packing Industry: A Plant-Level Analysis," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(1), pages 64-76.
    23. Kapelko, Magdalena & Oude Lansink, Alfons & Stefanou, Spiro E., 2014. "Assessing dynamic inefficiency of the Spanish construction sector pre- and post-financial crisis," European Journal of Operational Research, Elsevier, vol. 237(1), pages 349-357.
    24. R. G. Chambers & Y. Chung & R. Färe, 1998. "Profit, Directional Distance Functions, and Nerlovian Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 351-364, August.
    25. Briec, Walter & Kerstens, Kristiaan, 2009. "The Luenberger productivity indicator: An economic specification leading to infeasibilities," Economic Modelling, Elsevier, vol. 26(3), pages 597-600, May.
    26. Wendong Lv & Xiaoxin Hong & Kuangnan Fang, 2015. "Chinese regional energy efficiency change and its determinants analysis: Malmquist index and Tobit model," Annals of Operations Research, Springer, vol. 228(1), pages 9-22, May.
    27. Chambers, Robert G. & Fare, Rolf & Grosskopf, Shawna, 1996. "Productivity Growth in APEC Countries," Working Papers 197843, University of Maryland, Department of Agricultural and Resource Economics.
    28. George Battese & D. Rao & Christopher O'Donnell, 2004. "A Metafrontier Production Function for Estimation of Technical Efficiencies and Technology Gaps for Firms Operating Under Different Technologies," Journal of Productivity Analysis, Springer, vol. 21(1), pages 91-103, January.
    29. Silva, Elvira & Lansink, Alfons Oude & Stefanou, Spiro E., 2015. "The adjustment-cost model of the firm: Duality and productive efficiency," International Journal of Production Economics, Elsevier, vol. 168(C), pages 245-256.
    30. Magdalena Kapelko & Alfons Oude Lansink & Spiro E. Stefanou, 2016. "Investment Age and Dynamic Productivity Growth in the Spanish Food Processing Industry," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(3), pages 946-961.
    31. Ali, Jabir & Singh, Surendra P. & Ekanem, Enefiok P., 2009. "Efficiency and Productivity Changes in the Indian Food Processing Industry: Determinants and Policy Implications," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 12(1), pages 1-24, February.
    32. Elvira Silva & Spiro E. Stefanou, 2007. "Dynamic Efficiency Measurement: Theory and Application," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 89(2), pages 398-419.
    33. Vlontzos, George & Theodoridis, Alexandros, 2013. "Efficiency and Productivity Change in the Greek Dairy Industry," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 14(2), pages 1-15.
    34. Robert G. Chambers & Rulon D. Pope, 1996. "Aggregate Productivity Measures," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(5), pages 1360-1365.
    35. Kapelko, Magdalena & Oude Lansink, Alfons & Stefanou, Spiro E., 2015. "Analyzing the impact of investment spikes on dynamic productivity growth," Omega, Elsevier, vol. 54(C), pages 116-124.
    36. Kaoru Tone & Miki Tsutsui, 2014. "Slacks-Based Network DEA," International Series in Operations Research & Management Science, in: Wade D. Cook & Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 0, pages 231-259, Springer.
    37. Philipp Geymueller, 2009. "Static versus dynamic DEA in electricity regulation: the case of US transmission system operators," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 17(4), pages 397-413, December.
    38. Léopold Simar, 2003. "Detecting Outliers in Frontier Models: A Simple Approach," Journal of Productivity Analysis, Springer, vol. 20(3), pages 391-424, November.
    39. Lansink, Alfons Oude & Stefanou, Spiro & Serra, Teresa, 2015. "Primal and dual dynamic Luenberger productivity indicators," European Journal of Operational Research, Elsevier, vol. 241(2), pages 555-563.
    40. Leopold Simar & Valentin Zelenyuk, 2006. "On Testing Equality of Distributions of Technical Efficiency Scores," Econometric Reviews, Taylor & Francis Journals, vol. 25(4), pages 497-522.
    41. Sangho Kim & Gwangho Han, 2001. "A Decomposition of Total Factor Productivity Growth in Korean Manufacturing Industries: A Stochastic Frontier Approach," Journal of Productivity Analysis, Springer, vol. 16(3), pages 269-281, November.
    42. Nemoto, Jiro & Goto, Mika, 1999. "Dynamic data envelopment analysis: modeling intertemporal behavior of a firm in the presence of productive inefficiencies," Economics Letters, Elsevier, vol. 64(1), pages 51-56, July.
    43. A. Charnes & W. W. Cooper & E. Rhodes, 1981. "Evaluating Program and Managerial Efficiency: An Application of Data Envelopment Analysis to Program Follow Through," Management Science, INFORMS, vol. 27(6), pages 668-697, June.
    44. Ohlan, Ramphul, 2013. "Efficiency and Total Factor Productivity Growth in Indian Dairy Sector," Quarterly Journal of International Agriculture, Humboldt-Universitaat zu Berlin, vol. 52(1), pages 1-27, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lukáš Čechura & Zdeňka Žáková Kroupová, 2021. "Technical Efficiency in the European Dairy Industry: Can We Observe Systematic Failures in the Efficiency of Input Use?," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    2. Magdalena Kapelko & Alfons Oude Lansink, 2022. "Measuring firms' dynamic inefficiency accounting for corporate social responsibility in the U.S. food and beverage manufacturing industry," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 44(4), pages 1702-1721, December.
    3. Ali, Beshir M. & de Mey, Yann & Oude Lansink, Alfons G.J.M., 2021. "The effect of farm genetics expenses on dynamic productivity growth," European Journal of Operational Research, Elsevier, vol. 290(2), pages 701-717.
    4. Boussemart, Jean-Philippe & Ferrier, Gary D. & Leleu, Hervé & Shen, Zhiyang, 2020. "An expanded decomposition of the Luenberger productivity indicator with an application to the Chinese healthcare sector," Omega, Elsevier, vol. 91(C).
    5. Michael L. Polemis & Mike G. Tsionas, 2022. "Endogenous productivity: a new Bayesian perspective," Annals of Operations Research, Springer, vol. 318(1), pages 425-451, November.
    6. Gholam R. Amin & Mustapha Ibn Boamah, 2020. "A new inverse DEA cost efficiency model for estimating potential merger gains: a case of Canadian banks," Annals of Operations Research, Springer, vol. 295(1), pages 21-36, December.
    7. Chieh-Wen Chang & Kun-Shan Wu & Bao-Guang Chang & Kuo-Ren Lou, 2019. "Measuring Technical Efficiency and Returns to Scale in Taiwan’s Baking Industry―A Case Study of the 85 °C Company," Sustainability, MDPI, vol. 11(5), pages 1-14, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kapelko, Magdalena & Oude Lansink, Alfons & Stefanou, Spiro E., 2015. "Analyzing the impact of investment spikes on dynamic productivity growth," Omega, Elsevier, vol. 54(C), pages 116-124.
    2. Aparicio, Juan & Kapelko, Magdalena, 2019. "Accounting for slacks to measure dynamic inefficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 278(2), pages 463-471.
    3. Pinar Celikkol Geylani & Magdalena Kapelko & Spiro E. Stefanou, 2021. "Dynamic productivity change differences between global and non-global firms: a firm-level application to the U.S. food and beverage industries," Operational Research, Springer, vol. 21(2), pages 901-923, June.
    4. Magdalena Kapelko & Alfons Oude Lansink, 2018. "Managerial and program inefficiency for European meat manufacturing firms: A dynamic multidirectional inefficiency analysis approach," Journal of Productivity Analysis, Springer, vol. 49(1), pages 25-36, February.
    5. Magdalena Kapelko & Alfons Oude Lansink & Spiro E. Stefanou, 2017. "Input-Specific Dynamic Productivity Change: Measurement and Application to European Dairy Manufacturing Firms," Journal of Agricultural Economics, Wiley Blackwell, vol. 68(2), pages 579-599, June.
    6. Magdalena Kapelko & Alfons Oude Lansink, 2020. "Dynamic Cost Inefficiency of the European Union Meat Processing Firms," Journal of Agricultural Economics, Wiley Blackwell, vol. 71(3), pages 760-777, September.
    7. Magdalena Kapelko, 2017. "Dynamic versus static inefficiency assessment of the Polish meat‐processing industry in the aftermath of the European Union integration and financial crisis," Agribusiness, John Wiley & Sons, Ltd., vol. 33(4), pages 505-521, September.
    8. Magdalena Kapelko & Alfons Oude Lansink & Encarna Guillamon‐Saorin, 2021. "Corporate social responsibility and dynamic productivity change in the US food and beverage manufacturing industry," Agribusiness, John Wiley & Sons, Ltd., vol. 37(2), pages 286-305, April.
    9. Engida, Tadesse Getacher & Rao, Xudong & Oude Lansink, Alfons G.J.M., 2020. "A dynamic by-production framework for analyzing inefficiency associated with corporate social responsibility," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1170-1179.
    10. Kapelko, Magdalena & Oude Lansink, Alfons, 2017. "Dynamic multi-directional inefficiency analysis of European dairy manufacturing firms," European Journal of Operational Research, Elsevier, vol. 257(1), pages 338-344.
    11. Kapelko, Magdalena & Oude Lansink, Alfons & Stefanou, Spiro, 2012. "Analysis of static and dynamic productivity growth in the Spanish meat processing industry," Problems of World Agriculture / Problemy Rolnictwa Światowego, Warsaw University of Life Sciences, vol. 12(27), pages 1-13, September.
    12. Aparicio, Juan & Kapelko, Magdalena & Ortiz, Lidia, 2023. "Enhancing the measurement of firm inefficiency accounting for corporate social responsibility: A dynamic data envelopment analysis fuzzy approach," European Journal of Operational Research, Elsevier, vol. 306(2), pages 986-997.
    13. Encarna Guillamon-Saorin & Magdalena Kapelko & Spiro E. Stefanou, 2018. "Corporate Social Responsibility and Operational Inefficiency: A Dynamic Approach," Sustainability, MDPI, vol. 10(7), pages 1-26, July.
    14. Aparicio, Juan & Garcia-Nove, Eva M. & Kapelko, Magdalena & Pastor, Jesus T., 2017. "Graph productivity change measure using the least distance to the pareto-efficient frontier in data envelopment analysis," Omega, Elsevier, vol. 72(C), pages 1-14.
    15. Frederic Ang & Pieter Jan Kerstens, 2023. "Robust nonparametric analysis of dynamic profits, prices and productivity: An application to French meat-processing firms," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 50(2), pages 771-809.
    16. Aparicio, Juan & Ortiz, Lidia & Santín, Daniel, 2021. "Comparing group performance over time through the Luenberger productivity indicator: An application to school ownership in European countries," European Journal of Operational Research, Elsevier, vol. 294(2), pages 651-672.
    17. Kapelko, Magdalena & Oude Lansink, Alfons G.J.M. & Stefanou, Spiro E., 2012. "Dynamic Productivity Growth in the Spanish Meat Industry," 131st Seminar, September 18-19, 2012, Prague, Czech Republic 135789, European Association of Agricultural Economists.
    18. Frederic Ang & Pieter Jan Kerstens, 2016. "To Mix or Specialise? A Coordination Productivity Indicator for English and Welsh farms," Journal of Agricultural Economics, Wiley Blackwell, vol. 67(3), pages 779-798, September.
    19. Theodoros Skevas & Jasper Grashuis, 2023. "Evaluating dynamic productivity change of US farm supply cooperatives," Agribusiness, John Wiley & Sons, Ltd., vol. 39(4), pages 1238-1253, October.
    20. Briec, Walter & Dumas, Audrey & Kerstens, Kristiaan & Stenger, Agathe, 2022. "Generalised commensurability properties of efficiency measures: Implications for productivity indicators," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1481-1492.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:278:y:2019:i:1:d:10.1007_s10479-017-2497-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.