IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v228y2015i1p9-2210.1007-s10479-012-1094-5.html
   My bibliography  Save this article

Chinese regional energy efficiency change and its determinants analysis: Malmquist index and Tobit model

Author

Listed:
  • Wendong Lv
  • Xiaoxin Hong
  • Kuangnan Fang

Abstract

China becomes the largest energy consumer in 2010 but its energy productivity is well below the world average. To meet China’s fast growing energy using, energy efficiency should be especially emphasized under China’s energy policy. This paper focuses on the regional level of energy efficiency change in China. And we analyze total factor energy efficiency for 30 Chinese provinces over the period 1998–2009 using Malmquist index method and Tobit analysis. The Malmquist estimation results suggest there is a dropping change trend of energy productivity growth. Chinese energy efficiency still faces with huge regional disparity, but the energy technical efficiency reflects convergence in the nationwide and west region. As a result of Tobit regression, we find that industrial structure, energy consumption structure and institutional factor have different influences on energy efficiency. Copyright Springer Science+Business Media, LLC 2015

Suggested Citation

  • Wendong Lv & Xiaoxin Hong & Kuangnan Fang, 2015. "Chinese regional energy efficiency change and its determinants analysis: Malmquist index and Tobit model," Annals of Operations Research, Springer, vol. 228(1), pages 9-22, May.
  • Handle: RePEc:spr:annopr:v:228:y:2015:i:1:p:9-22:10.1007/s10479-012-1094-5
    DOI: 10.1007/s10479-012-1094-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-012-1094-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-012-1094-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sala-i-Martin, Xavier X, 1996. "The Classical Approach to Convergence Analysis," Economic Journal, Royal Economic Society, vol. 106(437), pages 1019-1036, July.
    2. Halkos, George Emm. & Tzeremes, Nickolaos G., 2009. "Exploring the existence of Kuznets curve in countries' environmental efficiency using DEA window analysis," Ecological Economics, Elsevier, vol. 68(7), pages 2168-2176, May.
    3. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    4. Mukherjee, Kankana, 2008. "Energy use efficiency in U.S. manufacturing: A nonparametric analysis," Energy Economics, Elsevier, vol. 30(1), pages 76-96, January.
    5. Shao, Shuai & Yang, Lili & Yu, Mingbo & Yu, Mingliang, 2011. "Estimation, characteristics, and determinants of energy-related industrial CO2 emissions in Shanghai (China), 1994-2009," Energy Policy, Elsevier, vol. 39(10), pages 6476-6494, October.
    6. Golany, B & Roll, Y, 1989. "An application procedure for DEA," Omega, Elsevier, vol. 17(3), pages 237-250.
    7. Belke, Ansgar & Dobnik, Frauke & Dreger, Christian, 2011. "Energy consumption and economic growth: New insights into the cointegration relationship," Energy Economics, Elsevier, vol. 33(5), pages 782-789, September.
    8. Shi, Guang-Ming & Bi, Jun & Wang, Jin-Nan, 2010. "Chinese regional industrial energy efficiency evaluation based on a DEA model of fixing non-energy inputs," Energy Policy, Elsevier, vol. 38(10), pages 6172-6179, October.
    9. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "Multilateral Comparisons of Output, Input, and Productivity Using Superlative Index Numbers," Economic Journal, Royal Economic Society, vol. 92(365), pages 73-86, March.
    10. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    11. Robert H. Rasche & John A. Tatom, 1977. "Energy resources and potential GNP," Review, Federal Reserve Bank of St. Louis, vol. 59(Jun), pages 10-24.
    12. Liao, Hua & Fan, Ying & Wei, Yi-Ming, 2007. "What induced China's energy intensity to fluctuate: 1997-2006?," Energy Policy, Elsevier, vol. 35(9), pages 4640-4649, September.
    13. Abbott, Malcolm, 2006. "The productivity and efficiency of the Australian electricity supply industry," Energy Economics, Elsevier, vol. 28(4), pages 444-454, July.
    14. Zhou, P. & Ang, B.W. & Han, J.Y., 2010. "Total factor carbon emission performance: A Malmquist index analysis," Energy Economics, Elsevier, vol. 32(1), pages 194-201, January.
    15. Ang, BW, 1994. "Decomposition of industrial energy consumption : The energy intensity approach," Energy Economics, Elsevier, vol. 16(3), pages 163-174, July.
    16. Hu, Jin-Li & Wang, Shih-Chuan, 2006. "Total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 34(17), pages 3206-3217, November.
    17. Diego Prior, 2006. "Efficiency and total quality management in health care organizations: A dynamic frontier approach," Annals of Operations Research, Springer, vol. 145(1), pages 281-299, July.
    18. Daigyo Seo & Allen Featherstone & Dennis Weisman & Yuan Gao, 2010. "Market Consolidation and Productivity Growth in U.S. Wireline Telecommunications: Stochastic Frontier Analysis vs. Malmquist Index," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 36(3), pages 271-294, May.
    19. Ku-Hsieh Chen & Hao-Yen Yang, 2011. "A cross-country comparison of productivity growth using the generalised metafrontier Malmquist productivity index: with application to banking industries in Taiwan and China," Journal of Productivity Analysis, Springer, vol. 35(3), pages 197-212, June.
    20. Zhang, Xing-Ping & Cheng, Xiao-Mei & Yuan, Jia-Hai & Gao, Xiao-Jun, 2011. "Total-factor energy efficiency in developing countries," Energy Policy, Elsevier, vol. 39(2), pages 644-650, February.
    21. Mette Asmild & Joseph Paradi & Vanita Aggarwall & Claire Schaffnit, 2004. "Combining DEA Window Analysis with the Malmquist Index Approach in a Study of the Canadian Banking Industry," Journal of Productivity Analysis, Springer, vol. 21(1), pages 67-89, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jorge Antunes & Luis Alberiko Gil-Alana & Rossana Riccardi & Yong Tan & Peter Wanke, 2022. "Unveiling endogeneity and temporal dependence in energy prices and demand in Iberian countries: a stochastic hidden Markov model approach," Annals of Operations Research, Springer, vol. 313(1), pages 191-229, June.
    2. Magdalena Kapelko, 2019. "Measuring productivity change accounting for adjustment costs: evidence from the food industry in the European Union," Annals of Operations Research, Springer, vol. 278(1), pages 215-234, July.
    3. Yiwen Bian & Kangjuan Lv & Anyu Yu, 2017. "China’s regional energy and carbon dioxide emissions efficiency evaluation with the presence of recovery energy: an interval slacks-based measure approach," Annals of Operations Research, Springer, vol. 255(1), pages 301-321, August.
    4. Long, Ruyin & Ren, Yuan & Wu, Meifen, 2022. "Differential decomposition of total-factor energy efficiency in Chinese coal mining cities considering environmental constraints: A dynamic and static perspective," Resources Policy, Elsevier, vol. 79(C).
    5. Teng, Xiangyu & Zhuang, Weiwei & Liu, Fan-peng & Chang, Tzu-han & Chiu, Yung-ho, 2023. "China's path of carbon neutralization to develop green energy and improve energy efficiency," Renewable Energy, Elsevier, vol. 206(C), pages 397-408.
    6. Tang, Liwei & He, Gang, 2021. "How to improve total factor energy efficiency? An empirical analysis of the Yangtze River economic belt of China," Energy, Elsevier, vol. 235(C).
    7. Tianxiang Lv & Xu Wu, 2019. "Using Panel Data to Evaluate the Factors Affecting Transport Energy Consumption in China’s Three Regions," IJERPH, MDPI, vol. 16(4), pages 1-14, February.
    8. Xu, Bin & Lin, Boqiang, 2016. "Differences in regional emissions in China's transport sector: Determinants and reduction strategies," Energy, Elsevier, vol. 95(C), pages 459-470.
    9. Tao Xu & Jianxin You & Yilei Shao, 2020. "Efficiency of China’s Listed Securities Companies: Estimation through a DEA-Based Method," Mathematics, MDPI, vol. 8(4), pages 1-16, April.
    10. Zhengju Jiang & Fuyou Guo & Liping Cai & Xiaoxiao Li, 2021. "Eco-Province Construction Performance and Its Influencing Factors of Shandong Province in China: From Regional Eco-Efficiency Perspective," Sustainability, MDPI, vol. 13(21), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Ke & Wei, Yi-Ming & Zhang, Xian, 2012. "A comparative analysis of China’s regional energy and emission performance: Which is the better way to deal with undesirable outputs?," Energy Policy, Elsevier, vol. 46(C), pages 574-584.
    2. Meng, Fanyi & Su, Bin & Thomson, Elspeth & Zhou, Dequn & Zhou, P., 2016. "Measuring China’s regional energy and carbon emission efficiency with DEA models: A survey," Applied Energy, Elsevier, vol. 183(C), pages 1-21.
    3. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    4. Wu, F. & Fan, L.W. & Zhou, P. & Zhou, D.Q., 2012. "Industrial energy efficiency with CO2 emissions in China: A nonparametric analysis," Energy Policy, Elsevier, vol. 49(C), pages 164-172.
    5. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
    6. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    7. Bian, Yiwen & Hu, Miao & Wang, Yousen & Xu, Hao, 2016. "Energy efficiency analysis of the economic system in China during 1986–2012: A parallel slacks-based measure approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 990-998.
    8. Du, Huibin & Matisoff, Daniel C. & Wang, Yangyang & Liu, Xi, 2016. "Understanding drivers of energy efficiency changes in China," Applied Energy, Elsevier, vol. 184(C), pages 1196-1206.
    9. Demiral, Elif E. & Sağlam, Ümit, 2021. "Eco-efficiency and Eco-productivity assessments of the states in the United States: A two-stage Non-parametric analysis," Applied Energy, Elsevier, vol. 303(C).
    10. Young-Tae Chang & Nan Zhang, 2017. "Environmental efficiency of transportation sectors in China and Korea," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(1), pages 68-93, March.
    11. Weibin Lin & Bin Chen & Lina Xie & Haoran Pan, 2015. "Estimating Energy Consumption of Transport Modes in China Using DEA," Sustainability, MDPI, vol. 7(4), pages 1-15, April.
    12. Yu, Dejian & He, Xiaorong, 2020. "A bibliometric study for DEA applied to energy efficiency: Trends and future challenges," Applied Energy, Elsevier, vol. 268(C).
    13. Magdalena Ziolo & Sandra Jednak & Gordana Savić & Dragana Kragulj, 2020. "Link between Energy Efficiency and Sustainable Economic and Financial Development in OECD Countries," Energies, MDPI, vol. 13(22), pages 1-28, November.
    14. Nuri Ozgur DOGAN & Can Tansel TUGCU, 2015. "Energy Efficiency in Electricity Production: A Data Envelopment Analysis (DEA) Approach for the G-20 Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 5(1), pages 246-252.
    15. Wang, Ke & Wei, Yi-Ming & Zhang, Xian, 2013. "Energy and emissions efficiency patterns of Chinese regions: A multi-directional efficiency analysis," Applied Energy, Elsevier, vol. 104(C), pages 105-116.
    16. Yang Li & An-Chi Liu & Shu-Mei Wang & Yiting Zhan & Jingran Chen & Hsiao-Fen Hsiao, 2022. "A Study of Total-Factor Energy Efficiency for Regional Sustainable Development in China: An Application of Bootstrapped DEA and Clustering Approach," Energies, MDPI, vol. 15(9), pages 1-13, April.
    17. Makridou, Georgia & Andriosopoulos, Kostas & Doumpos, Michael & Zopounidis, Constantin, 2016. "Measuring the efficiency of energy-intensive industries across European countries," Energy Policy, Elsevier, vol. 88(C), pages 573-583.
    18. Wu, Hua-qing & Shi, Yan & Xia, Qiong & Zhu, Wei-dong, 2014. "Effectiveness of the policy of circular economy in China: A DEA-based analysis for the period of 11th five-year-plan," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 163-175.
    19. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    20. Wang, Zhao-Hua & Zeng, Hua-Lin & Wei, Yi-Ming & Zhang, Yi-Xiang, 2012. "Regional total factor energy efficiency: An empirical analysis of industrial sector in China," Applied Energy, Elsevier, vol. 97(C), pages 115-123.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:228:y:2015:i:1:p:9-22:10.1007/s10479-012-1094-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.