IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v16y2009i1p81-102.html
   My bibliography  Save this article

Orderings and Probability Functionals Consistent with Preferences

Author

Listed:
  • Sergio Ortobelli
  • Svetlozar Rachev
  • Haim Shalit
  • Frank Fabozzi

Abstract

This paper unifies the classical theory of stochastic dominance and investor preferences with the recent literature on risk measures applied to the choice problem faced by investors. First, we summarize the main stochastic dominance rules used in the finance literature. Then we discuss the connection with the theory of integral stochastic orders and we introduce orderings consistent with investors' preferences. Thus, we classify them, distinguishing several categories of orderings associated with different classes of investors. Finally, we show how we can use risk measures and orderings consistent with some preferences to determine the investors' optimal choices.

Suggested Citation

  • Sergio Ortobelli & Svetlozar Rachev & Haim Shalit & Frank Fabozzi, 2009. "Orderings and Probability Functionals Consistent with Preferences," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(1), pages 81-102.
  • Handle: RePEc:taf:apmtfi:v:16:y:2009:i:1:p:81-102
    DOI: 10.1080/13504860802327180
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/13504860802327180
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13504860802327180?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    2. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    3. Fabio Maccheroni & Massimo Marinacci & Aldo Rustichini & Marco Taboga, 2009. "Portfolio Selection With Monotone Mean‐Variance Preferences," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 487-521, July.
    4. Harry Markowitz, 1952. "The Utility of Wealth," Journal of Political Economy, University of Chicago Press, vol. 60(2), pages 151-151.
    5. Moshe Levy & Haim Levy, 2013. "Prospect Theory: Much Ado About Nothing?," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 7, pages 129-144, World Scientific Publishing Co. Pte. Ltd..
    6. Fishburn, Peter C., 1976. "Continua of stochastic dominance relations for bounded probability distributions," Journal of Mathematical Economics, Elsevier, vol. 3(3), pages 295-311, December.
    7. Fishburn, Peter C., 1980. "Continua of stochastic dominance relations for unbounded probability distributions," Journal of Mathematical Economics, Elsevier, vol. 7(3), pages 271-285, December.
    8. Robert Bordley & Marco LiCalzi, 2000. "Decision analysis using targets instead of utility functions," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 23(1), pages 53-74.
    9. Edwards, Kimberley D., 1996. "Prospect theory: A literature review," International Review of Financial Analysis, Elsevier, vol. 5(1), pages 19-38.
    10. Manel Baucells & Franz H. Heukamp, 2006. "Stochastic Dominance and Cumulative Prospect Theory," Management Science, INFORMS, vol. 52(9), pages 1409-1423, September.
    11. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    12. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    13. Machina, Mark J, 1982. ""Expected Utility" Analysis without the Independence Axiom," Econometrica, Econometric Society, vol. 50(2), pages 277-323, March.
    14. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    15. Rothschild, Michael & Stiglitz, Joseph E., 1970. "Increasing risk: I. A definition," Journal of Economic Theory, Elsevier, vol. 2(3), pages 225-243, September.
    16. Milton Friedman & L. J. Savage, 1948. "The Utility Analysis of Choices Involving Risk," Journal of Political Economy, University of Chicago Press, vol. 56(4), pages 279-279.
    17. Muliere, Pietro & Scarsini, Marco, 1989. "A note on stochastic dominance and inequality measures," Journal of Economic Theory, Elsevier, vol. 49(2), pages 314-323, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Malavasi, Matteo & Ortobelli Lozza, Sergio & Trück, Stefan, 2021. "Second order of stochastic dominance efficiency vs mean variance efficiency," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1192-1206.
    2. Sergio Ortobelli & Noureddine Kouaissah & Tomáš Tichý, 2017. "On the impact of conditional expectation estimators in portfolio theory," Computational Management Science, Springer, vol. 14(4), pages 535-557, October.
    3. Raymond H. Chan & Ephraim Clark & Xu Guo & Wing-Keung Wong, 2020. "New development on the third-order stochastic dominance for risk-averse and risk-seeking investors with application in risk management," Risk Management, Palgrave Macmillan, vol. 22(2), pages 108-132, June.
    4. Iosif Pinelis, 2013. "An optimal three-way stable and monotonic spectrum of bounds on quantiles: a spectrum of coherent measures of financial risk and economic inequality," Papers 1310.6025, arXiv.org.
    5. Ran Ji & Miguel A. Lejeune & Srinivas Y. Prasad, 2017. "Properties, formulations, and algorithms for portfolio optimization using Mean-Gini criteria," Annals of Operations Research, Springer, vol. 248(1), pages 305-343, January.
    6. Sergio Ortobelli Lozza & Tommaso Lando & Filomena Petronio & Tomáš Tichý, 2016. "Asymptotic Multivariate Dominance: A Financial Application," Methodology and Computing in Applied Probability, Springer, vol. 18(4), pages 1097-1115, December.
    7. Iosif Pinelis, 2014. "An Optimal Three-Way Stable and Monotonic Spectrum of Bounds on Quantiles: A Spectrum of Coherent Measures of Financial Risk and Economic Inequality," Risks, MDPI, vol. 2(3), pages 1-44, September.
    8. Rosella Giacometti & Sergio Ortobelli & Tomáš Tichý, 2015. "Portfolio Selection with Uncertainty Measures Consistent with Additive Shifts," Prague Economic Papers, Prague University of Economics and Business, vol. 2015(1), pages 3-16.
    9. Alain Ruttiens, 2013. "Portfolio Risk Measures: The Time’s Arrow Matters," Computational Economics, Springer;Society for Computational Economics, vol. 41(3), pages 407-424, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mao, Tiantian & Wang, Ruodu, 2022. "Fractional stochastic dominance in rank-dependent utility and cumulative prospect theory," Journal of Mathematical Economics, Elsevier, vol. 103(C).
    2. David B. BROWN & Enrico G. DE GIORGI & Melvyn SIM, 2009. "A Satiscing Alternative to Prospect Theory," Swiss Finance Institute Research Paper Series 09-19, Swiss Finance Institute.
    3. Enrico G. De Giorgi & David B. Brown & Melvyn Sim, 2010. "Dual representation of choice and aspirational preferences," University of St. Gallen Department of Economics working paper series 2010 2010-07, Department of Economics, University of St. Gallen.
    4. Iosif Pinelis, 2013. "An optimal three-way stable and monotonic spectrum of bounds on quantiles: a spectrum of coherent measures of financial risk and economic inequality," Papers 1310.6025, arXiv.org.
    5. Xia Han & Ruodu Wang & Xun Yu Zhou, 2022. "Choquet regularization for reinforcement learning," Papers 2208.08497, arXiv.org.
    6. Cillo, Alessandra & Delquié, Philippe, 2014. "Mean-risk analysis with enhanced behavioral content," European Journal of Operational Research, Elsevier, vol. 239(3), pages 764-775.
    7. W. Wong & R. Chan, 2008. "Prospect and Markowitz stochastic dominance," Annals of Finance, Springer, vol. 4(1), pages 105-129, January.
    8. Raymond H. Chan & Ephraim Clark & Xu Guo & Wing-Keung Wong, 2020. "New development on the third-order stochastic dominance for risk-averse and risk-seeking investors with application in risk management," Risk Management, Palgrave Macmillan, vol. 22(2), pages 108-132, June.
    9. Jakusch, Sven Thorsten, 2017. "On the applicability of maximum likelihood methods: From experimental to financial data," SAFE Working Paper Series 148, Leibniz Institute for Financial Research SAFE, revised 2017.
    10. Levy, Haim & Levy, Moshe, 2002. "Experimental test of the prospect theory value function: A stochastic dominance approach," Organizational Behavior and Human Decision Processes, Elsevier, vol. 89(2), pages 1058-1081, November.
    11. Rachel J. Huang & Larry Y. Tzeng & Lin Zhao, 2020. "Fractional Degree Stochastic Dominance," Management Science, INFORMS, vol. 66(10), pages 4630-4647, October.
    12. Alfred Müller & Marco Scarsini & Ilia Tsetlin & Robert L. Winkler, 2017. "Between First- and Second-Order Stochastic Dominance," Management Science, INFORMS, vol. 63(9), pages 2933-2947, September.
    13. Topaloglou, Nikolas & Tsionas, Mike G., 2020. "Stochastic dominance tests," Journal of Economic Dynamics and Control, Elsevier, vol. 112(C).
    14. Arvanitis, Stelios & Topaloglou, Nikolas, 2017. "Testing for prospect and Markowitz stochastic dominance efficiency," Journal of Econometrics, Elsevier, vol. 198(2), pages 253-270.
    15. Moshe Levy & Haim Levy, 2013. "Prospect Theory: Much Ado About Nothing?," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 7, pages 129-144, World Scientific Publishing Co. Pte. Ltd..
    16. Arvanitis, Stelios & Scaillet, Olivier & Topaloglou, Nikolas, 2020. "Spanning tests for Markowitz stochastic dominance," Journal of Econometrics, Elsevier, vol. 217(2), pages 291-311.
    17. Zvi Safra & Uzi Segal, 2005. "Are Universal Preferences Possible? Calibration Results for Non-Expected Utility Theories," Boston College Working Papers in Economics 633, Boston College Department of Economics.
    18. repec:cup:judgdm:v:16:y:2021:i:6:p:1324-1369 is not listed on IDEAS
    19. Trabelsi, Mohamed Ali, 2006. "Les nouveaux modèles de décision dans le risque et l’incertain : quel apport ? [The new models of decision under risk or uncertainty : What approach?]," MPRA Paper 25442, University Library of Munich, Germany.
    20. Haim Levy, 2008. "First Degree Stochastic Dominance Violations: Decision Weights and Bounded Rationality," Economic Journal, Royal Economic Society, vol. 118(528), pages 759-774, April.
    21. Dillenberger, David & Segal, Uzi, 2017. "Skewed noise," Journal of Economic Theory, Elsevier, vol. 169(C), pages 344-364.

    More about this item

    Keywords

    G11; C44; C61;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:16:y:2009:i:1:p:81-102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.