IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v203y2024i3d10.1007_s10957-024-02550-y.html
   My bibliography  Save this article

Distributionally Robust Portfolio Optimization under Marginal and Copula Ambiguity

Author

Listed:
  • Zhengyang Fan

    (George Mason University)

  • Ran Ji

    (George Mason University)

  • Miguel A. Lejeune

    (The George Washington University)

Abstract

We investigate a new family of distributionally robust optimization problem under marginal and copula ambiguity with applications to portfolio optimization problems. The proposed model considers the ambiguity set of portfolio returns in which the marginal distributions and their copula are close—in terms of the Wasserstein distance—to their nominal counterparts. We develop a cutting-surface method to solve the proposed problem, in which the distribution separation subproblem is nonconvex and includes bilinear terms. We propose three approaches to solve the bilinear formulation, namely (1) linear relaxation via McCormick inequalities, (2) exact mixed-integer linear program reformulation via disjunctive inequalities, and (3) inner approximation method via a novel iterative procedure that exploits the structural properties of the bilinear optimization problem. We further carry out a comprehensive set of computational experiments with distributionally robust portfolios featuring Conditional Value-at-Risk (CVaR) measures. These tests aim to compare the accuracy of the proposed algorithms, analyze the impact of the radius of the Wasserstein ambiguity ball on the portfolio, and assess portfolio performance. We use a rolling-horizon approach to conduct the out-of-sample tests, which show the superior performance of the portfolios under marginal and copula ambiguity over the equally weighted and ambiguity-free Mean-CVaR benchmark portfolios.

Suggested Citation

  • Zhengyang Fan & Ran Ji & Miguel A. Lejeune, 2024. "Distributionally Robust Portfolio Optimization under Marginal and Copula Ambiguity," Journal of Optimization Theory and Applications, Springer, vol. 203(3), pages 2870-2907, December.
  • Handle: RePEc:spr:joptap:v:203:y:2024:i:3:d:10.1007_s10957-024-02550-y
    DOI: 10.1007/s10957-024-02550-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-024-02550-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-024-02550-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ran Ji & Miguel A. Lejeune, 2021. "Data-Driven Optimization of Reward-Risk Ratio Measures," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1120-1137, July.
    2. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    3. Zhilin Kang & Xun Li & Zhongfei Li & Shushang Zhu, 2019. "Data-driven robust mean-CVaR portfolio selection under distribution ambiguity," Quantitative Finance, Taylor & Francis Journals, vol. 19(1), pages 105-121, January.
    4. Kakouris, Iakovos & Rustem, Berç, 2014. "Robust portfolio optimization with copulas," European Journal of Operational Research, Elsevier, vol. 235(1), pages 28-37.
    5. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    6. Karthik Natarajan & Dessislava Pachamanova & Melvyn Sim, 2009. "Constructing Risk Measures from Uncertainty Sets," Operations Research, INFORMS, vol. 57(5), pages 1129-1141, October.
    7. Nagler, T. & Bumann, C. & Czado, C., 2019. "Model selection in sparse high-dimensional vine copula models with an application to portfolio risk," Journal of Multivariate Analysis, Elsevier, vol. 172(C), pages 180-192.
    8. Laurent El Ghaoui & Maksim Oks & Francois Oustry, 2003. "Worst-Case Value-At-Risk and Robust Portfolio Optimization: A Conic Programming Approach," Operations Research, INFORMS, vol. 51(4), pages 543-556, August.
    9. David Wozabal, 2014. "Robustifying Convex Risk Measures for Linear Portfolios: A Nonparametric Approach," Operations Research, INFORMS, vol. 62(6), pages 1302-1315, December.
    10. Adam Krzemienowski & Sylwia Szymczyk, 2016. "Portfolio optimization with a copula-based extension of conditional value-at-risk," Annals of Operations Research, Springer, vol. 237(1), pages 219-236, February.
    11. Adam Krzemienowski & Sylwia Szymczyk, 2016. "Portfolio optimization with a copula-based extension of conditional value-at-risk," Annals of Operations Research, Springer, vol. 237(1), pages 219-236, February.
    12. Boubaker, Heni & Sghaier, Nadia, 2013. "Portfolio optimization in the presence of dependent financial returns with long memory: A copula based approach," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 361-377.
    13. D. Goldfarb & G. Iyengar, 2003. "Robust Portfolio Selection Problems," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 1-38, February.
    14. Ran Ji & Miguel A. Lejeune & Zhengyang Fan, 2022. "Distributionally robust portfolio optimization with linearized STARR performance measure," Quantitative Finance, Taylor & Francis Journals, vol. 22(1), pages 113-127, January.
    15. Sahamkhadam, Maziar & Stephan, Andreas & Östermark, Ralf, 2018. "Portfolio optimization based on GARCH-EVT-Copula forecasting models," International Journal of Forecasting, Elsevier, vol. 34(3), pages 497-506.
    16. Hiroshi Konno & Hiroaki Yamazaki, 1991. "Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market," Management Science, INFORMS, vol. 37(5), pages 519-531, May.
    17. Luo, Fengqiao & Mehrotra, Sanjay, 2019. "Decomposition algorithm for distributionally robust optimization using Wasserstein metric with an application to a class of regression models," European Journal of Operational Research, Elsevier, vol. 278(1), pages 20-35.
    18. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.
    19. Tamara Teplova & Mikova Evgeniia & Qaiser Munir & Nataliya Pivnitskaya, 2023. "Black-Litterman model with copula-based views in mean-CVaR portfolio optimization framework with weight constraints," Economic Change and Restructuring, Springer, vol. 56(1), pages 515-535, February.
    20. Ran Ji & Miguel A. Lejeune & Srinivas Y. Prasad, 2017. "Properties, formulations, and algorithms for portfolio optimization using Mean-Gini criteria," Annals of Operations Research, Springer, vol. 248(1), pages 305-343, January.
    21. Xuan Vinh Doan & Xiaobo Li & Karthik Natarajan, 2015. "Robustness to Dependency in Portfolio Optimization Using Overlapping Marginals," Operations Research, INFORMS, vol. 63(6), pages 1468-1488, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2022. "Robust portfolio selection problems: a comprehensive review," Operational Research, Springer, vol. 22(4), pages 3203-3264, September.
    2. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2021. "Robust Portfolio Selection Problems: A Comprehensive Review," Papers 2103.13806, arXiv.org, revised Jan 2022.
    3. Panos Xidonas & Ralph Steuer & Christis Hassapis, 2020. "Robust portfolio optimization: a categorized bibliographic review," Annals of Operations Research, Springer, vol. 292(1), pages 533-552, September.
    4. Tamara Teplova & Mikova Evgeniia & Qaiser Munir & Nataliya Pivnitskaya, 2023. "Black-Litterman model with copula-based views in mean-CVaR portfolio optimization framework with weight constraints," Economic Change and Restructuring, Springer, vol. 56(1), pages 515-535, February.
    5. Selim Mankai & Khaled Guesmi, 2014. "Robust Portfolio Protection: A Scenarios-Based Approach," Working Papers hal-04141326, HAL.
    6. Su, Xiaoshan & Li, Yuhan, 2024. "Robust portfolio selection with subjective risk aversion under dependence uncertainty," Economic Modelling, Elsevier, vol. 132(C).
    7. Su, Xiaoshan & Bai, Manying & Han, Yingwei, 2021. "Robust portfolio selection with regime switching and asymmetric dependence," Economic Modelling, Elsevier, vol. 99(C).
    8. Sally G. Arcidiacono & Damiano Rossello, 2022. "A hybrid approach to the discrepancy in financial performance’s robustness," Operational Research, Springer, vol. 22(5), pages 5441-5476, November.
    9. Vahidin Jeleskovic & Claudio Latini & Zahid I. Younas & Mamdouh A. S. Al-Faryan, 2023. "Optimization of portfolios with cryptocurrencies: Markowitz and GARCH-Copula model approach," Papers 2401.00507, arXiv.org.
    10. Sandra Cruz Caçador & Pedro Manuel Cortesão Godinho & Joana Maria Pina Cabral Matos Dias, 2022. "A minimax regret portfolio model based on the investor’s utility loss," Operational Research, Springer, vol. 22(1), pages 449-484, March.
    11. Wei Liu & Li Yang & Bo Yu, 2021. "KDE distributionally robust portfolio optimization with higher moment coherent risk," Annals of Operations Research, Springer, vol. 307(1), pages 363-397, December.
    12. Sahamkhadam, Maziar & Stephan, Andreas & Östermark, Ralf, 2022. "Copula-based Black–Litterman portfolio optimization," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1055-1070.
    13. Sleire, Anders D. & Støve, Bård & Otneim, Håkon & Berentsen, Geir Drage & Tjøstheim, Dag & Haugen, Sverre Hauso, 2022. "Portfolio allocation under asymmetric dependence in asset returns using local Gaussian correlations," Finance Research Letters, Elsevier, vol. 46(PB).
    14. Mainik, Georg & Mitov, Georgi & Rüschendorf, Ludger, 2015. "Portfolio optimization for heavy-tailed assets: Extreme Risk Index vs. Markowitz," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 115-134.
    15. Maillet, Bertrand & Tokpavi, Sessi & Vaucher, Benoit, 2015. "Global minimum variance portfolio optimisation under some model risk: A robust regression-based approach," European Journal of Operational Research, Elsevier, vol. 244(1), pages 289-299.
    16. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    17. Sehgal, Ruchika & Sharma, Amita & Mansini, Renata, 2023. "Worst-case analysis of Omega-VaR ratio optimization model," Omega, Elsevier, vol. 114(C).
    18. Salo, Ahti & Doumpos, Michalis & Liesiö, Juuso & Zopounidis, Constantin, 2024. "Fifty years of portfolio optimization," European Journal of Operational Research, Elsevier, vol. 318(1), pages 1-18.
    19. Wei Chen & Yuxi Gai & Pankaj Gupta, 2018. "Efficiency evaluation of fuzzy portfolio in different risk measures via DEA," Annals of Operations Research, Springer, vol. 269(1), pages 103-127, October.
    20. Kouaissah, Noureddine, 2023. "Robust reward-risk performance measures with weakly second-order stochastic dominance constraints," The Quarterly Review of Economics and Finance, Elsevier, vol. 88(C), pages 53-62.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:203:y:2024:i:3:d:10.1007_s10957-024-02550-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.