IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v239y2016i2d10.1007_s10479-013-1460-y.html
   My bibliography  Save this article

Application of stochastic programming to reduce uncertainty in quality-based supply planning of slaughterhouses

Author

Listed:
  • W. A. Rijpkema

    (Wageningen University)

  • E. M. T. Hendrix

    (University of Málaga)

  • R. Rossi

    (University of Edinburgh)

  • J. G. A. J. Vorst

    (Wageningen University)

Abstract

To match products of different quality with end market preferences under supply uncertainty, it is crucial to integrate product quality information in logistics decision making. We present a case of this integration in a meat processing company that faces uncertainty in delivered livestock quality. We develop a stochastic programming model that exploits historical product quality delivery data to produce slaughterhouse allocation plans with reduced levels of uncertainty in received livestock quality. The allocation plans generated by this model fulfil demand for multiple quality features at separate slaughterhouses under prescribed service levels while minimizing transportation costs. We test the model on real world problem instances generated from a data set provided by an industrial partner. Results show that historical farmer delivery data can be used to reduce uncertainty in quality of animals to be delivered to slaughterhouses.

Suggested Citation

  • W. A. Rijpkema & E. M. T. Hendrix & R. Rossi & J. G. A. J. Vorst, 2016. "Application of stochastic programming to reduce uncertainty in quality-based supply planning of slaughterhouses," Annals of Operations Research, Springer, vol. 239(2), pages 613-624, April.
  • Handle: RePEc:spr:annopr:v:239:y:2016:i:2:d:10.1007_s10479-013-1460-y
    DOI: 10.1007/s10479-013-1460-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-013-1460-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-013-1460-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Tarim & Brahim Hnich & Steven Prestwich & Roberto Rossi, 2009. "Finding reliable solutions: event-driven probabilistic constraint programming," Annals of Operations Research, Springer, vol. 171(1), pages 77-99, October.
    2. Grunert, Klaus G., 2006. "How changes in consumer behaviour and retailing affect competence requirements for food producers and processors," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 6(11), pages 1-20.
    3. Roberto Rossi & S. Tarim & Brahim Hnich & Steven Prestwich, 2012. "Constraint programming for stochastic inventory systems under shortage cost," Annals of Operations Research, Springer, vol. 195(1), pages 49-71, May.
    4. Brunsø, Karen & Fjord, Thomas Ahle & Grunert, Klaus G., 2002. "Consumers' food choice and quality perception," MAPP Working Papers 77, University of Aarhus, Aarhus School of Business, The MAPP Centre.
    5. Willem Klein Haneveld & Maarten van der Vlerk, 1999. "Stochastic integer programming:General models and algorithms," Annals of Operations Research, Springer, vol. 85(0), pages 39-57, January.
    6. Rong, Aiying & Akkerman, Renzo & Grunow, Martin, 2011. "An optimization approach for managing fresh food quality throughout the supply chain," International Journal of Production Economics, Elsevier, vol. 131(1), pages 421-429, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohebalizadehgashti, Fatemeh & Zolfagharinia, Hossein & Amin, Saman Hassanzadeh, 2020. "Designing a green meat supply chain network: A multi-objective approach," International Journal of Production Economics, Elsevier, vol. 219(C), pages 312-327.
    2. Aljuneidi, Tariq & Punia, Sushil & Jebali, Aida & Nikolopoulos, Konstantinos, 2024. "Forecasting and planning for a critical infrastructure sector during a pandemic: Empirical evidence from a food supply chain," European Journal of Operational Research, Elsevier, vol. 317(3), pages 936-952.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schneider, Thea & Hartmann, Laura & Spiller, Achim, 2015. "Luxusmarketing bei Lebensmitteln: Eine empirische Studie zu Dimensionen des Luxuskonsums in Deutschland," Department of Agricultural and Rural Development (DARE) Discussion Papers 260786, Georg-August-Universitaet Goettingen, Department of Agricultural Economics and Rural Development (DARE).
    2. Yi-Kuei Lin & Cheng-Fu Huang & Yi-Chieh Liao, 2019. "Reliability of a stochastic intermodal logistics network under spoilage and time considerations," Annals of Operations Research, Springer, vol. 277(1), pages 95-118, June.
    3. Goisser, Simon & Mempel, Heike & Bitsch, Vera, 2020. "Food-Scanners as a Radical Innovation in German Fresh Produce Supply Chains," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 11(02), April.
    4. Mona Haji & Laoucine Kerbache & Mahaboob Muhammad & Tareq Al-Ansari, 2020. "Roles of Technology in Improving Perishable Food Supply Chains," Logistics, MDPI, vol. 4(4), pages 1-24, December.
    5. Stüve, David & van der Meer, Robert & Lütke Entrup, Matthias & Agha, Mouhamad Shaker Ali, 2020. "Supply chain planning in the food industry," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Blecker, Thorsten & Ringle, Christian M. (ed.), Data Science and Innovation in Supply Chain Management: How Data Transforms the Value Chain. Proceedings of the Hamburg International Conference of Lo, volume 29, pages 317-353, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    6. Amorim, P. & Günther, H.-O. & Almada-Lobo, B., 2012. "Multi-objective integrated production and distribution planning of perishable products," International Journal of Production Economics, Elsevier, vol. 138(1), pages 89-101.
    7. Marietta Kiss & Kontor Eniko & Kun Andras Istvan, 2015. "The Effect Of 'Organic' Labels On Consumer Perception Of Chocolates," Annals of Faculty of Economics, University of Oradea, Faculty of Economics, vol. 1(1), pages 448-457, July.
    8. Hongpeng Guo & Xiangnan Sun & Chulin Pan & Shuang Xu & Nan Yan, 2022. "The Sustainability of Fresh Agricultural Produce Live Broadcast Development: Influence on Consumer Purchase Intentions Based on Live Broadcast Characteristics," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    9. Sara Martins & Pedro Amorim & Bernardo Almada-Lobo, 2018. "Delivery mode planning for distribution to brick-and-mortar retail stores: discussion and literature review," Flexible Services and Manufacturing Journal, Springer, vol. 30(4), pages 785-812, December.
    10. Magdalena Klopott, 2022. "The Importance of Insurance in Maritime Trade of Chilled or Frozen Cargoes," European Research Studies Journal, European Research Studies Journal, vol. 0(3), pages 470-482.
    11. Ramo Barrena & Mercedes Sánchez, 2010. "The link between household structure and the level of abstraction in the purchase decision process: an analysis using a functional food," Agribusiness, John Wiley & Sons, Ltd., vol. 26(2), pages 243-264.
    12. Lejarza, Fernando & Pistikopoulos, Ioannis & Baldea, Michael, 2021. "A scalable real-time solution strategy for supply chain management of fresh produce: A Mexico-to-United States cross border study," International Journal of Production Economics, Elsevier, vol. 240(C).
    13. Klein Haneveld, W.K. & Vlerk, M.H. van der, 2000. "Optimizing electricity distribution using two-stage integer recourse models," Research Report 00A26, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    14. Bjorn P. Berg & Brian T. Denton, 2017. "Fast Approximation Methods for Online Scheduling of Outpatient Procedure Centers," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 631-644, November.
    15. Pérez-Mesa, Juan Carlos & García Barranco, Mª Carmen & Ciagnocavo, Cynthia & Hernández Rubio, Jesús, 2023. "Seeking new strategic options for promotion of intermodal transport in perishables: the use of Short Sea Shipping," MPRA Paper 119464, University Library of Munich, Germany, revised 2023.
    16. Guowei Liu & Jianxiong Zhang & Wansheng Tang, 2015. "Joint dynamic pricing and investment strategy for perishable foods with price-quality dependent demand," Annals of Operations Research, Springer, vol. 226(1), pages 397-416, March.
    17. Raut, Rakesh D. & Gardas, Bhaskar B. & Narwane, Vaibhav S. & Narkhede, Balkrishna E., 2019. "Improvement in the food losses in fruits and vegetable supply chain - a perspective of cold third-party logistics approach," Operations Research Perspectives, Elsevier, vol. 6(C).
    18. Ward Romeijnders & David P. Morton & Maarten H. van der Vlerk, 2017. "Assessing the Quality of Convex Approximations for Two-Stage Totally Unimodular Integer Recourse Models," INFORMS Journal on Computing, INFORMS, vol. 29(2), pages 211-231, May.
    19. repec:dgr:rugsom:03a14 is not listed on IDEAS
    20. Qiubo Li & Ru Xiao, 2021. "The use of data mining technology in agricultural e-commerce under the background of 6G Internet of things communication," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(4), pages 813-823, August.
    21. repec:dgr:rugsom:03a21 is not listed on IDEAS
    22. Pan, Fei & Zhou, Wei & Fan, Tijun & Li, Shuxia & Zhang, Chong, 2021. "Deterioration rate variation risk for sustainable cross-docking service operations," International Journal of Production Economics, Elsevier, vol. 232(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:239:y:2016:i:2:d:10.1007_s10479-013-1460-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.