IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v233y2015i1p483-50010.1007-s10479-014-1566-x.html
   My bibliography  Save this article

Firm credit risk evaluation: a series two-stage DEA modeling framework

Author

Listed:
  • Ioannis Tsolas

Abstract

This paper documents a new series two-stage DEA modeling framework for credit risk evaluation in terms of operating performance efficiency and effectiveness that is implemented to a sample of listed Greek firms of basic resources and chemicals sector. In the series stages two types of DEA metrics are used: The first type is based on the range adjusted measure (RAM) whereas the second type is based on a common set of weights (CSW) of RAM. Performance inefficiency is uncovered in both performance dimensions, but the real problem of inefficiency of the sampled firms is a lower level of effectiveness, rather than operating performance efficiency. The operating efficiency is not correlated with effectiveness, and thus it seems that there is not a link between the performance at the operational (cost-oriented) and financial (profit-oriented) spaces of the firm. Therefore, sample firms should give more emphasis on their profit-oriented policies to ensure their success in the industry. The research framework may benefit not only Greek listed firms, but also firms in other countries to quantify their performance and improve their competitive advantages. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Ioannis Tsolas, 2015. "Firm credit risk evaluation: a series two-stage DEA modeling framework," Annals of Operations Research, Springer, vol. 233(1), pages 483-500, October.
  • Handle: RePEc:spr:annopr:v:233:y:2015:i:1:p:483-500:10.1007/s10479-014-1566-x
    DOI: 10.1007/s10479-014-1566-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-014-1566-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-014-1566-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zopounidis, C & Pouliezos, A & Yannacopoulos, D, 1992. "Designing a DSS for the Assessment of Company Performance and Viability," Computer Science in Economics & Management, Kluwer;Society for Computational Economics, vol. 5(1), pages 41-56, February.
    2. Premachandra, I.M. & Bhabra, Gurmeet Singh & Sueyoshi, Toshiyuki, 2009. "DEA as a tool for bankruptcy assessment: A comparative study with logistic regression technique," European Journal of Operational Research, Elsevier, vol. 193(2), pages 412-424, March.
    3. Nickell, Pamela & Perraudin, William & Varotto, Simone, 2000. "Stability of rating transitions," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 203-227, January.
    4. Siriopoulos, Costas & Tziogkidis, Panagiotis, 2010. "How do Greek banking institutions react after significant events?--A DEA approach," Omega, Elsevier, vol. 38(5), pages 294-308, October.
    5. B. Hollingsworth & P. Smith, 2003. "Use of ratios in data envelopment analysis," Applied Economics Letters, Taylor & Francis Journals, vol. 10(11), pages 733-735.
    6. Becchetti, Leonardo & Sierra, Jaime, 2003. "Bankruptcy risk and productive efficiency in manufacturing firms," Journal of Banking & Finance, Elsevier, vol. 27(11), pages 2099-2120, November.
    7. Guan, Jiancheng & Chen, Kaihua, 2012. "Modeling the relative efficiency of national innovation systems," Research Policy, Elsevier, vol. 41(1), pages 102-115.
    8. JosÉ Figueira & Salvatore Greco & Matthias Ehrogott, 2005. "Multiple Criteria Decision Analysis: State of the Art Surveys," International Series in Operations Research and Management Science, Springer, number 978-0-387-23081-8, January.
    9. Constantin Zopounidis & Michael Doumpos, 1999. "Business failure prediction using the UTADIS multicriteria analysis method," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(11), pages 1138-1148, November.
    10. Balcaen, Sofie & Ooghe, Hubert, 2006. "35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems," The British Accounting Review, Elsevier, vol. 38(1), pages 63-93.
    11. Douglas D. Evanoff & Philip R. Israilevich, 1991. "Productive efficiency in banking," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 15(Jul), pages 11-32.
    12. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    13. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    14. W. Cooper & L. Seiford & K. Tone & J. Zhu, 2007. "Some models and measures for evaluating performances with DEA: past accomplishments and future prospects," Journal of Productivity Analysis, Springer, vol. 28(3), pages 151-163, December.
    15. Emel, Ahmet Burak & Oral, Muhittin & Reisman, Arnold & Yolalan, Reha, 2003. "A credit scoring approach for the commercial banking sector," Socio-Economic Planning Sciences, Elsevier, vol. 37(2), pages 103-123, June.
    16. Joseph Paradi & Mette Asmild & Paul Simak, 2004. "Using DEA and Worst Practice DEA in Credit Risk Evaluation," Journal of Productivity Analysis, Springer, vol. 21(2), pages 153-165, March.
    17. Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
    18. Yurdakul, Mustafa & Ic, Yusuf Tansel, 2004. "AHP approach in the credit evaluation of the manufacturing firms in Turkey," International Journal of Production Economics, Elsevier, vol. 88(3), pages 269-289, April.
    19. William Cooper & Kyung Park & Jesus Pastor, 1999. "RAM: A Range Adjusted Measure of Inefficiency for Use with Additive Models, and Relations to Other Models and Measures in DEA," Journal of Productivity Analysis, Springer, vol. 11(1), pages 5-42, February.
    20. Keasey, K & McGuinness, P & Short, H, 1990. "Multilogit approach to predicting corporate failure--Further analysis and the issue of signal consistency," Omega, Elsevier, vol. 18(1), pages 85-94.
    21. Michael Doumpos & Constantin Zopounidis, 2007. "Model combination for credit risk assessment: A stacked generalization approach," Annals of Operations Research, Springer, vol. 151(1), pages 289-306, April.
    22. Charnes, A. & Cooper, W. W. & Golany, B. & Seiford, L. & Stutz, J., 1985. "Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 91-107.
    23. Altman, Edward I. & Haldeman, Robert G. & Narayanan, P., 1977. "ZETATM analysis A new model to identify bankruptcy risk of corporations," Journal of Banking & Finance, Elsevier, vol. 1(1), pages 29-54, June.
    24. Kelly Rae Chi, 2010. "A systems approach," Nature, Nature, vol. 464(7291), pages 1090-1091, April.
    25. Ioannis E. Tsolas, 2010. "Modeling bank branch profitability and effectiveness by means of DEA," International Journal of Productivity and Performance Management, Emerald Group Publishing Limited, vol. 59(5), pages 432-451, June.
    26. Psillaki, Maria & Tsolas, Ioannis E. & Margaritis, Dimitris, 2010. "Evaluation of credit risk based on firm performance," European Journal of Operational Research, Elsevier, vol. 201(3), pages 873-881, March.
    27. Doumpos, M. & Kosmidou, K. & Baourakis, G. & Zopounidis, C., 2002. "Credit risk assessment using a multicriteria hierarchical discrimination approach: A comparative analysis," European Journal of Operational Research, Elsevier, vol. 138(2), pages 392-412, April.
    28. Dimitras, A. I. & Slowinski, R. & Susmaga, R. & Zopounidis, C., 1999. "Business failure prediction using rough sets," European Journal of Operational Research, Elsevier, vol. 114(2), pages 263-280, April.
    29. Mareschal, B. & Brans, J. P., 1991. "BANKADVISER: An industrial evaluation system," European Journal of Operational Research, Elsevier, vol. 54(3), pages 318-324, October.
    30. Avkiran, Necmi Kemal, 1999. "The evidence on efficiency gains: The role of mergers and the benefits to the public," Journal of Banking & Finance, Elsevier, vol. 23(7), pages 991-1013, July.
    31. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    32. Cielen, Anja & Peeters, Ludo & Vanhoof, Koen, 2004. "Bankruptcy prediction using a data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 154(2), pages 526-532, April.
    33. Kosmidou K. & Doumpos M. & Zopounidis C., 2002. "A Multicriteria Hierarchical Discrimination Approach for Credit Risk Problems," European Research Studies Journal, European Research Studies Journal, vol. 0(1-2), pages 53-68, January -.
    34. Diakoulaki, D & Mavrotas, G & Papayannakis, L, 1992. "A multicriteria approach for evaluating the performance of industrial firms," Omega, Elsevier, vol. 20(4), pages 467-474, July.
    35. Martin, Daniel, 1977. "Early warning of bank failure : A logit regression approach," Journal of Banking & Finance, Elsevier, vol. 1(3), pages 249-276, November.
    36. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    37. Zmijewski, Me, 1984. "Methodological Issues Related To The Estimation Of Financial Distress Prediction Models," Journal of Accounting Research, Wiley Blackwell, vol. 22, pages 59-82.
    38. W.W. Cooper & Timothy W. Ruefli & Honghui Deng & Jun Wu & Zhongyi Zhang, 2008. "Are state-owned banks less efficient? A long- vs. short-run Data Envelopment Analysis of Chinese banks," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 3(5), pages 533-556.
    39. Gianpaolo Iazzolino & Maria Elena Bruni & Patrizia Beraldi, 2013. "Using DEA and financial ratings for credit risk evaluation: an empirical analysis," Applied Economics Letters, Taylor & Francis Journals, vol. 20(14), pages 1310-1317, September.
    40. Timothy J. Coelli & D.S. Prasada Rao & Christopher J. O’Donnell & George E. Battese, 2005. "An Introduction to Efficiency and Productivity Analysis," Springer Books, Springer, edition 0, number 978-0-387-25895-9, April.
    41. Asmild, Mette & Paradi, Joseph C. & Reese, David N. & Tam, Fai, 2007. "Measuring overall efficiency and effectiveness using DEA," European Journal of Operational Research, Elsevier, vol. 178(1), pages 305-321, April.
    42. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    43. Tsai, Hsiang-Chih & Chen, Chun-Mei & Tzeng, Gwo-Hshiung, 2006. "The comparative productivity efficiency for global telecoms," International Journal of Production Economics, Elsevier, vol. 103(2), pages 509-526, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dafydd Mali & Hyoung-Joo Lim, 2022. "Does relative (absolute) efficiency affect capital costs?," Annals of Operations Research, Springer, vol. 315(2), pages 1037-1060, August.
    2. Pranith Kumar Roy & Krishnendu Shaw & Alessio Ishizaka, 2023. "Developing an integrated fuzzy credit rating system for SMEs using fuzzy-BWM and fuzzy-TOPSIS-Sort-C," Annals of Operations Research, Springer, vol. 325(2), pages 1197-1229, June.
    3. Zhongfei Chen & Stavros Kourtzidis & Panayiotis Tzeremes & Nickolaos Tzeremes, 2022. "A robust network DEA model for sustainability assessment: an application to Chinese Provinces," Operational Research, Springer, vol. 22(1), pages 235-262, March.
    4. Imen Derouiche & Riadh Manita & Anke Muessig, 2021. "Risk disclosure and firm operational efficiency," Annals of Operations Research, Springer, vol. 297(1), pages 115-145, February.
    5. Ioannis E. Tsolas, 2021. "Firm Credit Scoring: A Series Two-Stage DEA Bootstrapped Approach," JRFM, MDPI, vol. 14(5), pages 1-12, May.
    6. Ioannis E. Tsolas, 2020. "Precious Metal Mutual Fund Performance Evaluation: A Series Two-Stage DEA Modeling Approach," JRFM, MDPI, vol. 13(5), pages 1-13, April.
    7. Zhongbao Zhou & Qianying Jin & Jian Peng & Helu Xiao & Shijian Wu, 2019. "Further Study of the DEA-Based Framework for Performance Evaluation of Competing Crude Oil Prices’ Volatility Forecasting Models," Mathematics, MDPI, vol. 7(9), pages 1-10, September.
    8. Ge Gao & Hongxin Wang & Pengbin Gao, 2021. "Establishing a Credit Risk Evaluation System for SMEs Using the Soft Voting Fusion Model," Risks, MDPI, vol. 9(11), pages 1-12, November.
    9. Zhang, Lifeng & Chao, Xiangrui & Qian, Qian & Jing, Fuying, 2022. "Credit evaluation solutions for social groups with poor services in financial inclusion: A technical forecasting method," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    10. Chang Liu & Hui-Lin Xiao, 2022. "The Impact of Ambidextrous Innovation Human Capital on the Technological Innovation Efficiency and Stage Efficiency of Big Data Enterprises," Sustainability, MDPI, vol. 14(24), pages 1-21, December.
    11. Eric Séverin & David Veganzones, 2021. "Can earnings management information improve bankruptcy prediction models?," Annals of Operations Research, Springer, vol. 306(1), pages 247-272, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Psillaki, Maria & Tsolas, Ioannis E. & Margaritis, Dimitris, 2010. "Evaluation of credit risk based on firm performance," European Journal of Operational Research, Elsevier, vol. 201(3), pages 873-881, March.
    2. Mousavi, Mohammad M. & Ouenniche, Jamal & Xu, Bing, 2015. "Performance evaluation of bankruptcy prediction models: An orientation-free super-efficiency DEA-based framework," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 64-75.
    3. fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
    4. Şaban Çelik, 2013. "Micro Credit Risk Metrics: A Comprehensive Review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(4), pages 233-272, October.
    5. Róbert Štefko & Jarmila Horváthová & Martina Mokrišová, 2020. "Bankruptcy Prediction with the Use of Data Envelopment Analysis: An Empirical Study of Slovak Businesses," JRFM, MDPI, vol. 13(9), pages 1-15, September.
    6. Mohammad Mahdi Mousavi & Jamal Ouenniche, 2018. "Multi-criteria ranking of corporate distress prediction models: empirical evaluation and methodological contributions," Annals of Operations Research, Springer, vol. 271(2), pages 853-886, December.
    7. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    8. Dimitras, A. I. & Zanakis, S. H. & Zopounidis, C., 1996. "A survey of business failures with an emphasis on prediction methods and industrial applications," European Journal of Operational Research, Elsevier, vol. 90(3), pages 487-513, May.
    9. du Jardin, Philippe, 2015. "Bankruptcy prediction using terminal failure processes," European Journal of Operational Research, Elsevier, vol. 242(1), pages 286-303.
    10. Zhiyong Li & Chen Feng & Ying Tang, 2022. "Bank efficiency and failure prediction: a nonparametric and dynamic model based on data envelopment analysis," Annals of Operations Research, Springer, vol. 315(1), pages 279-315, August.
    11. Ioannis E. Tsolas, 2021. "Firm Credit Scoring: A Series Two-Stage DEA Bootstrapped Approach," JRFM, MDPI, vol. 14(5), pages 1-12, May.
    12. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    13. Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
    14. Premachandra, I.M. & Bhabra, Gurmeet Singh & Sueyoshi, Toshiyuki, 2009. "DEA as a tool for bankruptcy assessment: A comparative study with logistic regression technique," European Journal of Operational Research, Elsevier, vol. 193(2), pages 412-424, March.
    15. Necmi Avkiran & Lin Cai, 2014. "Identifying distress among banks prior to a major crisis using non-oriented super-SBM," Annals of Operations Research, Springer, vol. 217(1), pages 31-53, June.
    16. Evangelos C. Charalambakis, 2015. "On the Prediction of Corporate Financial Distress in the Light of the Financial Crisis: Empirical Evidence from Greek Listed Firms," International Journal of the Economics of Business, Taylor & Francis Journals, vol. 22(3), pages 407-428, November.
    17. Apostolos G. Christopoulos & Ioannis G. Dokas & Iraklis Kollias & John Leventides, 2019. "An implementation of Soft Set Theory in the Variables Selection Process for Corporate Failure Prediction Models. Evidence from NASDAQ Listed Firms," Bulletin of Applied Economics, Risk Market Journals, vol. 6(1), pages 1-20.
    18. Fernando García & Francisco Guijarro & Ismael Moya, 2013. "Monitoring credit risk in the social economy sector by means of a binary goal programming model," Service Business, Springer;Pan-Pacific Business Association, vol. 7(3), pages 483-495, September.
    19. Sueyoshi, Toshiyuki & Goto, Mika, 2009. "Methodological comparison between DEA (data envelopment analysis) and DEA-DA (discriminant analysis) from the perspective of bankruptcy assessment," European Journal of Operational Research, Elsevier, vol. 199(2), pages 561-575, December.
    20. Jamal Ouenniche & Kaoru Tone, 2017. "An out-of-sample evaluation framework for DEA with application in bankruptcy prediction," Annals of Operations Research, Springer, vol. 254(1), pages 235-250, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:233:y:2015:i:1:p:483-500:10.1007/s10479-014-1566-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.