IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i9p827-d264820.html
   My bibliography  Save this article

Further Study of the DEA-Based Framework for Performance Evaluation of Competing Crude Oil Prices’ Volatility Forecasting Models

Author

Listed:
  • Zhongbao Zhou

    (School of Business Administration, Hunan University, Changsha 410082, China)

  • Qianying Jin

    (School of Business Administration, Hunan University, Changsha 410082, China)

  • Jian Peng

    (School of Business Administration, Hunan University, Changsha 410082, China)

  • Helu Xiao

    (School of Business, Hunan Normal University, Changsha 410081, China)

  • Shijian Wu

    (College of Economics and Management, Shandong University of Science and Technology, Qingdao 266590, China)

Abstract

The super-efficiency data envelopment analysis model is innovative in evaluating the performance of crude oil prices’ volatility forecasting models. This multidimensional ranking, which takes account of multiple criteria, gives rise to a unified decision as to which model performs best. However, the rankings are unreliable because some efficiency scores are infeasible solutions in nature. What’s more, the desirability of indexes is worth discussing so as to avoid incorrect rankings. Hence, herein we introduce four models, which address the issue of undesirable characteristics of indexes and infeasibility of the super efficiency models. The empirical results reveal that the new rankings are more robust and quite different from the existing results.

Suggested Citation

  • Zhongbao Zhou & Qianying Jin & Jian Peng & Helu Xiao & Shijian Wu, 2019. "Further Study of the DEA-Based Framework for Performance Evaluation of Competing Crude Oil Prices’ Volatility Forecasting Models," Mathematics, MDPI, vol. 7(9), pages 1-10, September.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:9:p:827-:d:264820
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/9/827/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/9/827/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Wenbin & Zhou, Zhongbao & Liu, Debin & Xiao, Helu, 2015. "Estimation of portfolio efficiency via DEA," Omega, Elsevier, vol. 52(C), pages 107-118.
    2. Per Andersen & Niels Christian Petersen, 1993. "A Procedure for Ranking Efficient Units in Data Envelopment Analysis," Management Science, INFORMS, vol. 39(10), pages 1261-1264, October.
    3. Ling Tang & Wei Dai & Lean Yu & Shouyang Wang, 2015. "A Novel CEEMD-Based EELM Ensemble Learning Paradigm for Crude Oil Price Forecasting," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 141-169.
    4. Narayan, Paresh Kumar & Sharma, Susan & Poon, Wai Ching & Westerlund, Joakim, 2014. "Do oil prices predict economic growth? New global evidence," Energy Economics, Elsevier, vol. 41(C), pages 137-146.
    5. Halkos, George & Petrou, Kleoniki Natalia, 2019. "Treating undesirable outputs in DEA: A critical review," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 97-104.
    6. Chen, Yao, 2005. "Measuring super-efficiency in DEA in the presence of infeasibility," European Journal of Operational Research, Elsevier, vol. 161(2), pages 545-551, March.
    7. Xu, Bing & Ouenniche, Jamal, 2012. "A data envelopment analysis-based framework for the relative performance evaluation of competing crude oil prices' volatility forecasting models," Energy Economics, Elsevier, vol. 34(2), pages 576-583.
    8. Liu, Jing & Ma, Feng & Yang, Ke & Zhang, Yaojie, 2018. "Forecasting the oil futures price volatility: Large jumps and small jumps," Energy Economics, Elsevier, vol. 72(C), pages 321-330.
    9. Liu, W.B. & Zhang, D.Q. & Meng, W. & Li, X.X. & Xu, F., 2011. "A study of DEA models without explicit inputs," Omega, Elsevier, vol. 39(5), pages 472-480, October.
    10. Zhou, Zhongbao & Lin, Ling & Li, Shuxian, 2018. "International stock market contagion: A CEEMDAN wavelet analysis," Economic Modelling, Elsevier, vol. 72(C), pages 333-352.
    11. Zhou, Zhongbao & Xiao, Helu & Jin, Qianying & Liu, Wenbin, 2018. "DEA frontier improvement and portfolio rebalancing: An application of China mutual funds on considering sustainability information disclosure," European Journal of Operational Research, Elsevier, vol. 269(1), pages 111-131.
    12. Chen, Yao & Liang, Liang, 2011. "Super-efficiency DEA in the presence of infeasibility: One model approach," European Journal of Operational Research, Elsevier, vol. 213(1), pages 359-360, August.
    13. W D Cook & L Liang & Y Zha & J Zhu, 2009. "A modified super-efficiency DEA model for infeasibility," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(2), pages 276-281, February.
    14. Ioannis Tsolas, 2015. "Firm credit risk evaluation: a series two-stage DEA modeling framework," Annals of Operations Research, Springer, vol. 233(1), pages 483-500, October.
    15. Klein, Tony & Walther, Thomas, 2016. "Oil price volatility forecast with mixture memory GARCH," Energy Economics, Elsevier, vol. 58(C), pages 46-58.
    16. Zhou, Zhongbao & Jiang, Yong & Liu, Yan & Lin, Ling & Liu, Qing, 2019. "Does international oil volatility have directional predictability for stock returns? Evidence from BRICS countries based on cross-quantilogram analysis," Economic Modelling, Elsevier, vol. 80(C), pages 352-382.
    17. Lee, Hsuan-Shih & Zhu, Joe, 2012. "Super-efficiency infeasibility and zero data in DEA," European Journal of Operational Research, Elsevier, vol. 216(2), pages 429-433.
    18. Kang, Sang Hoon & Kang, Sang-Mok & Yoon, Seong-Min, 2009. "Forecasting volatility of crude oil markets," Energy Economics, Elsevier, vol. 31(1), pages 119-125, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arthur J. Lin & Hai-Yen Chang, 2020. "Volatility Transmission from Equity, Bulk Shipping, and Commodity Markets to Oil ETF and Energy Fund—A GARCH-MIDAS Model," Mathematics, MDPI, vol. 8(9), pages 1-21, September.
    2. Tai-Shan Lee & Ching-Hsin Wang & Chun-Min Yu, 2019. "Fuzzy Evaluation Model for Enhancing E-Learning Systems," Mathematics, MDPI, vol. 7(10), pages 1-11, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, I-Lung & Lee, Hsuan-Shih & Lee, Dan, 2017. "An integrated model for slack-based measure of super-efficiency in additive DEA," Omega, Elsevier, vol. 67(C), pages 160-167.
    2. Guo-Ya Gan & Hsuan-Shih Lee, 2021. "Resolving the infeasibility of the super-efficiency DEA based on DDF," Annals of Operations Research, Springer, vol. 307(1), pages 139-152, December.
    3. Ghasemi, M.-R. & Ignatius, Joshua & Emrouznejad, Ali, 2014. "A bi-objective weighted model for improving the discrimination power in MCDEA," European Journal of Operational Research, Elsevier, vol. 233(3), pages 640-650.
    4. Fang, Hsin-Hsiung & Lee, Hsuan-Shih & Hwang, Shiuh-Nan & Chung, Cheng-Chi, 2013. "A slacks-based measure of super-efficiency in data envelopment analysis: An alternative approach," Omega, Elsevier, vol. 41(4), pages 731-734.
    5. Zohreh Sadeghi & Reza Farzipoor Saen & Mahdi Moradzadehfard, 2022. "RETRACTED ARTICLE: Developing a network data envelopment analysis model for appraising sustainable supply chains: a sustainability accounting approach," Operations Management Research, Springer, vol. 15(3), pages 809-824, December.
    6. Lin, Ruiyue & Li, Zongxin, 2020. "Directional distance based diversification super-efficiency DEA models for mutual funds," Omega, Elsevier, vol. 97(C).
    7. Atwood, Joseph & Shaik, Saleem, 2020. "Theory and statistical properties of Quantile Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 286(2), pages 649-661.
    8. Lin, Ling & Jiang, Yong & Xiao, Helu & Zhou, Zhongbao, 2020. "Crude oil price forecasting based on a novel hybrid long memory GARCH-M and wavelet analysis model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 543(C).
    9. Zervopoulos, Panagiotis & Emrouznejad, Ali & Sklavos, Sokratis, 2019. "A Bayesian approach for correcting bias of data envelopment analysis estimators," MPRA Paper 91886, University Library of Munich, Germany.
    10. Baldin, Andrea, 2017. "A DEA approach for selecting a bundle of tickets for performing arts events," Journal of Retailing and Consumer Services, Elsevier, vol. 39(C), pages 190-200.
    11. Ya Chen & Yongjun Li & Liang Liang & Huaqing Wu, 2019. "An extension on super slacks-based measure DEA approach," Annals of Operations Research, Springer, vol. 278(1), pages 101-121, July.
    12. Ghasemi, Mohammad Reza & Ignatius, Joshua & Rezaee, Babak, 2019. "Improving discriminating power in data envelopment models based on deviation variables framework," European Journal of Operational Research, Elsevier, vol. 278(2), pages 442-447.
    13. Rezaeiani, M.J. & Foroughi, A.A., 2018. "Ranking efficient decision making units in data envelopment analysis based on reference frontier share," European Journal of Operational Research, Elsevier, vol. 264(2), pages 665-674.
    14. Lee, Hsuan-Shih, 2022. "Integrating SBM model and Super-SBM model: a one-model approach," Omega, Elsevier, vol. 113(C).
    15. An, Qingxian & Tao, Xiangyang & Xiong, Beibei & Chen, Xiaohong, 2022. "Frontier-based incentive mechanisms for allocating common revenues or fixed costs," European Journal of Operational Research, Elsevier, vol. 302(1), pages 294-308.
    16. Lee, Hsuan-Shih & Zhu, Joe, 2012. "Super-efficiency infeasibility and zero data in DEA," European Journal of Operational Research, Elsevier, vol. 216(2), pages 429-433.
    17. Chen, Yao & Du, Juan & Huo, Jiazhen, 2013. "Super-efficiency based on a modified directional distance function," Omega, Elsevier, vol. 41(3), pages 621-625.
    18. Cheng, Gang & Zervopoulos, Panagiotis, 2012. "A proxy approach to dealing with the infeasibility problem in super-efficiency data envelopment analysis," MPRA Paper 42064, University Library of Munich, Germany.
    19. Cheng, Gang & Qian, Zhenhua & Zervopoulos, Panagiotis, 2011. "Overcoming the infeasibility of super-efficiency DEA model: a model with generalized orientation," MPRA Paper 31991, University Library of Munich, Germany.
    20. Lin, Ruiyue & Liu, Yue, 2019. "Super-efficiency based on the directional distance function in the presence of negative data," Omega, Elsevier, vol. 85(C), pages 26-34.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:9:p:827-:d:264820. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.