An out-of-sample evaluation framework for DEA with application in bankruptcy prediction
Author
Abstract
Suggested Citation
DOI: 10.1007/s10479-017-2431-5
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Per Andersen & Niels Christian Petersen, 1993. "A Procedure for Ranking Efficient Units in Data Envelopment Analysis," Management Science, INFORMS, vol. 39(10), pages 1261-1264, October.
- Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
- Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
- Joseph Paradi & Mette Asmild & Paul Simak, 2004. "Using DEA and Worst Practice DEA in Credit Risk Evaluation," Journal of Productivity Analysis, Springer, vol. 21(2), pages 153-165, March.
- Taffler, Richard J., 1984. "Empirical models for the monitoring of UK corporations," Journal of Banking & Finance, Elsevier, vol. 8(2), pages 199-227, June.
- Seiford, Lawrence M. & Zhu, Joe, 2003. "Context-dependent data envelopment analysis--Measuring attractiveness and progress," Omega, Elsevier, vol. 31(5), pages 397-408, October.
- Cielen, Anja & Peeters, Ludo & Vanhoof, Koen, 2004. "Bankruptcy prediction using a data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 154(2), pages 526-532, April.
- Tone, Kaoru, 2002. "A slacks-based measure of super-efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 143(1), pages 32-41, November.
- R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
- Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
- Zhang, Guoqiang & Y. Hu, Michael & Eddy Patuwo, B. & C. Indro, Daniel, 1999. "Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis," European Journal of Operational Research, Elsevier, vol. 116(1), pages 16-32, July.
- Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min & Lin, Bruce J.Y., 2013. "A survey of DEA applications," Omega, Elsevier, vol. 41(5), pages 893-902.
- Mousavi, Mohammad M. & Ouenniche, Jamal & Xu, Bing, 2015. "Performance evaluation of bankruptcy prediction models: An orientation-free super-efficiency DEA-based framework," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 64-75.
- Xu, Bing & Ouenniche, Jamal, 2012. "A data envelopment analysis-based framework for the relative performance evaluation of competing crude oil prices' volatility forecasting models," Energy Economics, Elsevier, vol. 34(2), pages 576-583.
- Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
- Premachandra, I.M. & Chen, Yao & Watson, John, 2011. "DEA as a tool for predicting corporate failure and success: A case of bankruptcy assessment," Omega, Elsevier, vol. 39(6), pages 620-626, December.
- Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
- Zmijewski, Me, 1984. "Methodological Issues Related To The Estimation Of Financial Distress Prediction Models," Journal of Accounting Research, Wiley Blackwell, vol. 22, pages 59-82.
- B. Xu & J. Ouenniche, 2011. "A multidimensional framework for performance evaluation of forecasting models: context-dependent DEA," Applied Financial Economics, Taylor & Francis Journals, vol. 21(24), pages 1873-1890, December.
- Shumway, Tyler, 2001. "Forecasting Bankruptcy More Accurately: A Simple Hazard Model," The Journal of Business, University of Chicago Press, vol. 74(1), pages 101-124, January.
- Sreedhar T. Bharath & Tyler Shumway, 2008. "Forecasting Default with the Merton Distance to Default Model," The Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1339-1369, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
- Philippe Jardin, 2023. "Designing topological data to forecast bankruptcy using convolutional neural networks," Annals of Operations Research, Springer, vol. 325(2), pages 1291-1332, June.
- Li, Yongjun & Wang, Lizheng & Li, Feng, 2021. "A data-driven prediction approach for sports team performance and its application to National Basketball Association," Omega, Elsevier, vol. 98(C).
- Natawat Jatuphatwarodom & Dylan F. Jones & Djamila Ouelhadj, 2018. "A mixed-model multi-objective analysis of strategic supply chain decision support in the Thai silk industry," Annals of Operations Research, Springer, vol. 267(1), pages 221-247, August.
- Zhiyong Li & Chen Feng & Ying Tang, 2022. "Bank efficiency and failure prediction: a nonparametric and dynamic model based on data envelopment analysis," Annals of Operations Research, Springer, vol. 315(1), pages 279-315, August.
- Jamal Ouenniche & Kais Bouslah & Blanca Perez-Gladish & Bing Xu, 2021. "A new VIKOR-based in-sample-out-of-sample classifier with application in bankruptcy prediction," Annals of Operations Research, Springer, vol. 296(1), pages 495-512, January.
- Jinghai Shao & Sovan Mitra & Andreas Karathanasopoulos, 2022. "Optimal feedback control of stock prices under credit risk dynamics," Annals of Operations Research, Springer, vol. 313(2), pages 1285-1318, June.
- Philippe Jardin, 2021. "Forecasting bankruptcy using biclustering and neural network-based ensembles," Annals of Operations Research, Springer, vol. 299(1), pages 531-566, April.
- Róbert Štefko & Jarmila Horváthová & Martina Mokrišová, 2021. "The Application of Graphic Methods and the DEA in Predicting the Risk of Bankruptcy," JRFM, MDPI, vol. 14(5), pages 1-19, May.
- Mohammad Mahdi Mousavi & Jamal Ouenniche, 2018. "Multi-criteria ranking of corporate distress prediction models: empirical evaluation and methodological contributions," Annals of Operations Research, Springer, vol. 271(2), pages 853-886, December.
- Eric Séverin & David Veganzones, 2021. "Can earnings management information improve bankruptcy prediction models?," Annals of Operations Research, Springer, vol. 306(1), pages 247-272, November.
- Yan He & Yung-ho Chiu & Bin Zhang, 2020. "Prevaluating Technical Efficiency Gains From Potential Mergers and Acquisitions in China’s Coal Industry," SAGE Open, , vol. 10(3), pages 21582440209, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mousavi, Mohammad M. & Ouenniche, Jamal & Xu, Bing, 2015. "Performance evaluation of bankruptcy prediction models: An orientation-free super-efficiency DEA-based framework," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 64-75.
- Mohammad Mahdi Mousavi & Jamal Ouenniche, 2018. "Multi-criteria ranking of corporate distress prediction models: empirical evaluation and methodological contributions," Annals of Operations Research, Springer, vol. 271(2), pages 853-886, December.
- Nawaf Almaskati & Ron Bird & Yue Lu & Danny Leung, 2019. "The Role of Corporate Governance and Estimation Methods in Predicting Bankruptcy," Working Papers in Economics 19/16, University of Waikato.
- Almaskati, Nawaf & Bird, Ron & Yeung, Danny & Lu, Yue, 2021. "A horse race of models and estimation methods for predicting bankruptcy," Advances in accounting, Elsevier, vol. 52(C).
- Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
- Róbert Štefko & Jarmila Horváthová & Martina Mokrišová, 2020. "Bankruptcy Prediction with the Use of Data Envelopment Analysis: An Empirical Study of Slovak Businesses," JRFM, MDPI, vol. 13(9), pages 1-15, September.
- Şaban Çelik, 2013. "Micro Credit Risk Metrics: A Comprehensive Review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(4), pages 233-272, October.
- Ioannis Tsolas, 2015. "Firm credit risk evaluation: a series two-stage DEA modeling framework," Annals of Operations Research, Springer, vol. 233(1), pages 483-500, October.
- Róbert Štefko & Jarmila Horváthová & Martina Mokrišová, 2021. "The Application of Graphic Methods and the DEA in Predicting the Risk of Bankruptcy," JRFM, MDPI, vol. 14(5), pages 1-19, May.
- fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
- Mai, Nhat Chi, 2015. "Efficiency of the banking system in Vietnam under financial liberalization," OSF Preprints qsf6d, Center for Open Science.
- Duc Hong Vo & Binh Ninh Vo Pham & Chi Minh Ho & Michael McAleer, 2019. "Corporate Financial Distress of Industry Level Listings in Vietnam," JRFM, MDPI, vol. 12(4), pages 1-17, September.
- Vo, D.H. & Pham, B.V.-N. & Pham, T.V.-T. & McAleer, M.J., 2019.
"Corporate Financial Distress of Industry Level Listings in an Emerging Market,"
Econometric Institute Research Papers
EI2019-15, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Duc Hong Vo & Binh Vo-Ninh Pham & Trung Vu-Thanh Pham & Michael McAleer, 2019. "Corporate Financial Distress of Industry Level Listings in an Emerging Market," Documentos de Trabajo del ICAE 2019-09, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Qunfeng LIAO & Seyed MEHDIAN, 2016. "Measuring Financial Distress And Predicting Corporate Bankruptcy: An Index Approach," Review of Economic and Business Studies, Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, issue 17, pages 33-51, June.
- Qiao, Lu & Fei, Junjun, 2022. "Government subsidies, enterprise operating efficiency, and “stiff but deathless” zombie firms," Economic Modelling, Elsevier, vol. 107(C).
- Alam, Nurul & Gao, Junbin & Jones, Stewart, 2021. "Corporate failure prediction: An evaluation of deep learning vs discrete hazard models," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 75(C).
- Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.
- Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
- Necmi Avkiran & Lin Cai, 2014. "Identifying distress among banks prior to a major crisis using non-oriented super-SBM," Annals of Operations Research, Springer, vol. 217(1), pages 31-53, June.
- Ahsan Habib & Mabel D' Costa & Hedy Jiaying Huang & Md. Borhan Uddin Bhuiyan & Li Sun, 2020. "Determinants and consequences of financial distress: review of the empirical literature," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(S1), pages 1023-1075, April.
More about this item
Keywords
Data envelopment analysis; Out-of-sample evaluation; K-Nearest neighbor; Bankruptcy prediction; Risk assessment;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:254:y:2017:i:1:d:10.1007_s10479-017-2431-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.