IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v145y2006i1p321-33710.1007-s10479-006-0038-3.html
   My bibliography  Save this article

Evaluating the financial performance of bank branches

Author

Listed:
  • Jesús Pastor
  • C. Lovell
  • Henry Tulkens

Abstract

We evaluate the financial performance of most of the branch offices of a large European savings bank for a recent accounting period. We employ a complementary pair of nonparametric techniques to evaluate their financial performance, in terms of their ability to conserve on the expenses they incur in building their customer bases and providing customer services. We find variation in the ability of branch offices to perform this task, and agreement on the identity of the laggard branches. We then employ parametric techniques to determine that the list of indicators on which their financial performance is evaluated can be reduced without statistically significant loss of information to bank management. Both findings suggest ways in which the bank can increase the profitability of its branch network. Copyright Springer Science+Business Media, LLC 2006

Suggested Citation

  • Jesús Pastor & C. Lovell & Henry Tulkens, 2006. "Evaluating the financial performance of bank branches," Annals of Operations Research, Springer, vol. 145(1), pages 321-337, July.
  • Handle: RePEc:spr:annopr:v:145:y:2006:i:1:p:321-337:10.1007/s10479-006-0038-3
    DOI: 10.1007/s10479-006-0038-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-006-0038-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-006-0038-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Paradi, Joseph C. & Schaffnit, Claire, 2004. "Commercial branch performance evaluation and results communication in a Canadian bank--a DEA application," European Journal of Operational Research, Elsevier, vol. 156(3), pages 719-735, August.
    2. Antreas D. Athanassopoulos & Dimitris Giokas, 2000. "The Use of Data Envelopment Analysis in Banking Institutions: Evidence from the Commercial Bank of Greece," Interfaces, INFORMS, vol. 30(2), pages 81-95, April.
    3. Cinzia Daraio & Léopold Simar, 2005. "Introducing Environmental Variables in Nonparametric Frontier Models: a Probabilistic Approach," Journal of Productivity Analysis, Springer, vol. 24(1), pages 93-121, September.
    4. Henry Tulkens, 2006. "On FDH Efficiency Analysis: Some Methodological Issues and Applications to Retail Banking, Courts and Urban Transit," Springer Books, in: Parkash Chander & Jacques Drèze & C. Knox Lovell & Jack Mintz (ed.), Public goods, environmental externalities and fiscal competition, chapter 0, pages 311-342, Springer.
    5. Fried, Harold O. & Knox Lovell, C. A. & Eeckaut, Philippe Vanden, 1993. "Evaluating the performance of US credit unions," Journal of Banking & Finance, Elsevier, vol. 17(2-3), pages 251-265, April.
    6. A S Camanho & R G Dyson, 1999. "Efficiency, size, benchmarks and targets for bank branches: an application of data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(9), pages 903-915, September.
    7. Henry Tulkens & Philippe Eeckaut, 2006. "Nonparametric Efficiency, Progress and Regress Measures For Panel Data: Methodological Aspects," Springer Books, in: Parkash Chander & Jacques Drèze & C. Knox Lovell & Jack Mintz (ed.), Public goods, environmental externalities and fiscal competition, chapter 0, pages 395-429, Springer.
    8. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    9. Dekker, David & Post, Thierry, 2001. "A quasi-concave DEA model with an application for bank branch performance evaluation," European Journal of Operational Research, Elsevier, vol. 132(2), pages 296-311, July.
    10. Soteriou, Andreas C. & Zenios, Stavros A., 1999. "Using data envelopment analysis for costing bank products," European Journal of Operational Research, Elsevier, vol. 114(2), pages 234-248, April.
    11. Bala, Kamel & Cook, Wade D., 2003. "Performance measurement with classification information: an enhanced additive DEA model," Omega, Elsevier, vol. 31(6), pages 439-450, December.
    12. Maria Silva Portela & Pedro Borges & Emmanuel Thanassoulis, 2003. "Finding Closest Targets in Non-Oriented DEA Models: The Case of Convex and Non-Convex Technologies," Journal of Productivity Analysis, Springer, vol. 19(2), pages 251-269, April.
    13. Hartman, Thomas E. & Storbeck, James E. & Byrnes, Patricia, 2001. "Allocative efficiency in branch banking," European Journal of Operational Research, Elsevier, vol. 134(2), pages 232-242, October.
    14. Fried, H. O. & Knox Lovell, C. A., 1994. "Enhancing the performance of credit unions: the evolution of a methodology," LIDAM Reprints CORE 1155, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    15. Wade Cook & Moez Hababou & Hans Tuenter, 2000. "Multicomponent Efficiency Measurement and Shared Inputs in Data Envelopment Analysis: An Application to Sales and Service Performance in Bank Branches," Journal of Productivity Analysis, Springer, vol. 14(3), pages 209-224, November.
    16. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    17. Jenkins, Larry & Anderson, Murray, 2003. "A multivariate statistical approach to reducing the number of variables in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 147(1), pages 51-61, May.
    18. Jeffrey Kantor & Shlomo Maital, 1999. "Measuring Efficiency by Product Group: Integrating DEA with Activity-Based Accounting in a Large Mideast Bank," Interfaces, INFORMS, vol. 29(3), pages 27-36, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen-Chih Chen & Andrew Johnson, 2010. "The dynamics of performance space of Major League Baseball pitchers 1871–2006," Annals of Operations Research, Springer, vol. 181(1), pages 287-302, December.
    2. Christos Floros, 2020. "Banking Development and Economy in Greece: Evidence from Regional Data," JRFM, MDPI, vol. 13(10), pages 1-13, October.
    3. Yiting Xing & Ling Li & Zhuming Bi & Marzena Wilamowska‐Korsak & Li Zhang, 2013. "Operations Research (OR) in Service Industries: A Comprehensive Review," Systems Research and Behavioral Science, Wiley Blackwell, vol. 30(3), pages 300-353, May.
    4. Eskelinen, Juha, 2017. "Comparison of variable selection techniques for data envelopment analysis in a retail bank," European Journal of Operational Research, Elsevier, vol. 259(2), pages 778-788.
    5. Yang, Chyan & Liu, Hsian-Ming, 2012. "Managerial efficiency in Taiwan bank branches: A network DEA," Economic Modelling, Elsevier, vol. 29(2), pages 450-461.
    6. Fatemeh Boloori & Jafar Pourmahmoud, 2016. "A modified SBM-NDEA approach for the efficiency measurement in bank branches," Operational Research, Springer, vol. 16(2), pages 301-326, July.
    7. Chih-Ching Yang, 2014. "An enhanced DEA model for decomposition of technical efficiency in banking," Annals of Operations Research, Springer, vol. 214(1), pages 167-185, March.
    8. Panagiotis Tziogkidis & Kent Matthews & Dionisis Philippas, 2018. "The effects of sector reforms on the productivity of Greek banks: a step-by-step analysis of the pre-Euro era," Annals of Operations Research, Springer, vol. 266(1), pages 531-549, July.
    9. Thanh, Ngo, 2011. "Effectiveness of the Global Banking System in 2010: A Data Envelopment Analysis approach," MPRA Paper 56389, University Library of Munich, Germany.
    10. Fernando A. F. Ferreira & Sérgio P. Santos & Paulo M. M. Rodrigues & Ronald W. Spahr, 2014. "How to create indices for bank branch financial performance measurement using MCDA techniques: an illustrative example," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 15(4), pages 708-728, September.
    11. Paradi, Joseph C. & Zhu, Haiyan, 2013. "A survey on bank branch efficiency and performance research with data envelopment analysis," Omega, Elsevier, vol. 41(1), pages 61-79.
    12. Shamima Islam & Rakibul Islam, 2022. "Measurement of Financial Performance of Rupali Bank Limited," International Journal of Science and Business, IJSAB International, vol. 15(1), pages 45-56.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paradi, Joseph C. & Zhu, Haiyan, 2013. "A survey on bank branch efficiency and performance research with data envelopment analysis," Omega, Elsevier, vol. 41(1), pages 61-79.
    2. Giokas, Dimitris I., 2008. "Assessing the efficiency in operations of a large Greek bank branch network adopting different economic behaviors," Economic Modelling, Elsevier, vol. 25(3), pages 559-574, May.
    3. Dejene Mamo Bekana (MBA) & Asres Abitie (MBA), 2012. "Evaluation Of Financial Performance Of Banking Enterprises; The Case Of Construction And Business Bank Of Ethiopia," Revista Tinerilor Economisti (The Young Economists Journal), University of Craiova, Faculty of Economics and Business Administration, vol. 1(18), pages 82-102, April.
    4. Fethi, Meryem Duygun & Pasiouras, Fotios, 2010. "Assessing bank efficiency and performance with operational research and artificial intelligence techniques: A survey," European Journal of Operational Research, Elsevier, vol. 204(2), pages 189-198, July.
    5. G.S. Donatos & D.I. Giokas, 2008. "Relative Efficiency in the branch network of a Greek bank: A quantitative analysis," European Research Studies Journal, European Research Studies Journal, vol. 0(3), pages 53-72.
    6. Paradi, Joseph C. & Rouatt, Stephen & Zhu, Haiyan, 2011. "Two-stage evaluation of bank branch efficiency using data envelopment analysis," Omega, Elsevier, vol. 39(1), pages 99-109, January.
    7. Portela, Maria Conceicao A. Silva & Thanassoulis, Emmanuel, 2007. "Comparative efficiency analysis of Portuguese bank branches," European Journal of Operational Research, Elsevier, vol. 177(2), pages 1275-1288, March.
    8. Imad Bou-Hamad & Abdel Latef Anouze & Ibrahim H. Osman, 2022. "A cognitive analytics management framework to select input and output variables for data envelopment analysis modeling of performance efficiency of banks using random forest and entropy of information," Annals of Operations Research, Springer, vol. 308(1), pages 63-92, January.
    9. Paradi, Joseph C. & Schaffnit, Claire, 2004. "Commercial branch performance evaluation and results communication in a Canadian bank--a DEA application," European Journal of Operational Research, Elsevier, vol. 156(3), pages 719-735, August.
    10. Das, Abhiman & Ray, Subhash C. & Nag, Ashok, 2009. "Labor-use efficiency in Indian banking: A branch-level analysis," Omega, Elsevier, vol. 37(2), pages 411-425, April.
    11. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    12. E. Grigoroudis & E. Tsitsiridi & C. Zopounidis, 2013. "Linking customer satisfaction, employee appraisal, and business performance: an evaluation methodology in the banking sector," Annals of Operations Research, Springer, vol. 205(1), pages 5-27, May.
    13. Eskelinen, Juha & Halme, Merja & Kallio, Markku, 2014. "Bank branch sales evaluation using extended value efficiency analysis," European Journal of Operational Research, Elsevier, vol. 232(3), pages 654-663.
    14. A S Camanho & R G Dyson, 2005. "Cost efficiency, production and value-added models in the analysis of bank branch performance," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(5), pages 483-494, May.
    15. Cherchye, L. & Post, G.T., 2001. "Methodological Advances in Dea," ERIM Report Series Research in Management ERS-2001-53-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    16. J. Cummins & Hongmin Zi, 1998. "Comparison of Frontier Efficiency Methods: An Application to the U.S. Life Insurance Industry," Journal of Productivity Analysis, Springer, vol. 10(2), pages 131-152, October.
    17. Fried, Harold O. & Lovell, C. A. Knox & Yaisawarng, Suthathip, 1999. "The impact of mergers on credit union service provision," Journal of Banking & Finance, Elsevier, vol. 23(2-4), pages 367-386, February.
    18. Halkos, George & Tzeremes, Nickolaos, 2008. "Measuring regional public health provision," MPRA Paper 23762, University Library of Munich, Germany.
    19. Podinovski, Victor V. & Kuosmanen, Timo, 2011. "Modelling weak disposability in data envelopment analysis under relaxed convexity assumptions," European Journal of Operational Research, Elsevier, vol. 211(3), pages 577-585, June.
    20. Krüger, Jens J., 2018. "Direct targeting of efficient DMUs for benchmarking," International Journal of Production Economics, Elsevier, vol. 199(C), pages 1-6.

    More about this item

    Keywords

    Performance indicators; Variable deletion tests; Banking;
    All these keywords.

    JEL classification:

    • D20 - Microeconomics - - Production and Organizations - - - General
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:145:y:2006:i:1:p:321-337:10.1007/s10479-006-0038-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.