IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v259y2017i2p778-788.html
   My bibliography  Save this article

Comparison of variable selection techniques for data envelopment analysis in a retail bank

Author

Listed:
  • Eskelinen, Juha

Abstract

If there are too few units compared to inputs and outputs, the efficiency evaluation based upon the data envelopment analysis suffers from a lack of discrimination. The literature has proposed various statistical techniques when the value judgments do not guide the selection of the inputs/outputs. Two techniques, the variable reduction procedure of Jenkins and Anderson (2003) and the approach based upon the efficiency contribution measure of Pastor, Ruiz, and Sirvent (2002), were compared in an empirical retail bank context. The objective was to select a representative set of outputs from the services the bank provides. As the techniques take different approaches to selecting influential variables, the output sets proposed by the techniques diverged. This created some significant differences in the efficiency evaluations of the bank branches. The bank management gave feedback on the techniques and the results from a practical perspective. The techniques led to different managerial interpretations of the performance complementing each other. Thus, the techniques can be utilized to evaluate the units from multiple perspectives.

Suggested Citation

  • Eskelinen, Juha, 2017. "Comparison of variable selection techniques for data envelopment analysis in a retail bank," European Journal of Operational Research, Elsevier, vol. 259(2), pages 778-788.
  • Handle: RePEc:eee:ejores:v:259:y:2017:i:2:p:778-788
    DOI: 10.1016/j.ejor.2016.11.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716309158
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.11.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Phillip Fanchon, 2003. "Variable selection for dynamic measures of efficiency in the computer industry," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 9(3), pages 175-188, August.
    2. Jesús Pastor & C. Lovell & Henry Tulkens, 2006. "Evaluating the financial performance of bank branches," Annals of Operations Research, Springer, vol. 145(1), pages 321-337, July.
    3. Paradi, Joseph C. & Zhu, Haiyan, 2013. "A survey on bank branch efficiency and performance research with data envelopment analysis," Omega, Elsevier, vol. 41(1), pages 61-79.
    4. Eskelinen, Juha & Halme, Merja & Kallio, Markku, 2014. "Bank branch sales evaluation using extended value efficiency analysis," European Journal of Operational Research, Elsevier, vol. 232(3), pages 654-663.
    5. Adler, Nicole & Golany, Boaz, 2001. "Evaluation of deregulated airline networks using data envelopment analysis combined with principal component analysis with an application to Western Europe," European Journal of Operational Research, Elsevier, vol. 132(2), pages 260-273, July.
    6. Sinuany-Stern, Zilla & Friedman, Lea, 1998. "DEA and the discriminant analysis of ratios for ranking units," European Journal of Operational Research, Elsevier, vol. 111(3), pages 470-478, December.
    7. Henry Tulkens & Philippe Eeckaut, 2006. "Nonparametric Efficiency, Progress and Regress Measures For Panel Data: Methodological Aspects," Springer Books, in: Parkash Chander & Jacques Drèze & C. Knox Lovell & Jack Mintz (ed.), Public goods, environmental externalities and fiscal competition, chapter 0, pages 395-429, Springer.
    8. Lewin, Arie Y & Morey, Richard C & Cook, Thomas J, 1982. "Evaluating the administrative efficiency of courts," Omega, Elsevier, vol. 10(4), pages 401-411.
    9. Victor Podinovski & Emmanuel Thanassoulis, 2007. "Improving discrimination in data envelopment analysis: some practical suggestions," Journal of Productivity Analysis, Springer, vol. 28(1), pages 117-126, October.
    10. Wagner, Janet M. & Shimshak, Daniel G., 2007. "Stepwise selection of variables in data envelopment analysis: Procedures and managerial perspectives," European Journal of Operational Research, Elsevier, vol. 180(1), pages 57-67, July.
    11. Portela, Maria Conceicao A. Silva & Thanassoulis, Emmanuel, 2007. "Comparative efficiency analysis of Portuguese bank branches," European Journal of Operational Research, Elsevier, vol. 177(2), pages 1275-1288, March.
    12. Wen-Chih Chen & Andrew Johnson, 2010. "The dynamics of performance space of Major League Baseball pitchers 1871–2006," Annals of Operations Research, Springer, vol. 181(1), pages 287-302, December.
    13. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    14. Boussofiane, A. & Dyson, R. G. & Thanassoulis, E., 1991. "Applied data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 52(1), pages 1-15, May.
    15. Jenkins, Larry & Anderson, Murray, 2003. "A multivariate statistical approach to reducing the number of variables in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 147(1), pages 51-61, May.
    16. Adler, Nicole & Yazhemsky, Ekaterina, 2010. "Improving discrimination in data envelopment analysis: PCA-DEA or variable reduction," European Journal of Operational Research, Elsevier, vol. 202(1), pages 273-284, April.
    17. Sharma, Mithun J. & Yu, Song Jin, 2015. "Stepwise regression data envelopment analysis for variable reduction," Applied Mathematics and Computation, Elsevier, vol. 253(C), pages 126-134.
    18. Dyson, R. G. & Allen, R. & Camanho, A. S. & Podinovski, V. V. & Sarrico, C. S. & Shale, E. A., 2001. "Pitfalls and protocols in DEA," European Journal of Operational Research, Elsevier, vol. 132(2), pages 245-259, July.
    19. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    20. Eskelinen, Juha & Kuosmanen, Timo, 2013. "Intertemporal efficiency analysis of sales teams of a bank: Stochastic semi-nonparametric approach," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5163-5175.
    21. Nataraja, Niranjan R. & Johnson, Andrew L., 2011. "Guidelines for using variable selection techniques in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 215(3), pages 662-669, December.
    22. Rajiv D. Banker, 1993. "Maximum Likelihood, Consistency and Data Envelopment Analysis: A Statistical Foundation," Management Science, INFORMS, vol. 39(10), pages 1265-1273, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Visani, Franco & Boccali, Filippo, 2020. "Purchasing price assessment of leverage items: A Data Envelopment Analysis approach," International Journal of Production Economics, Elsevier, vol. 223(C).
    2. Jamal Ouenniche & Skarleth Carrales, 2018. "Assessing efficiency profiles of UK commercial banks: a DEA analysis with regression-based feedback," Annals of Operations Research, Springer, vol. 266(1), pages 551-587, July.
    3. Imad Bou-Hamad & Abdel Latef Anouze & Ibrahim H. Osman, 2022. "A cognitive analytics management framework to select input and output variables for data envelopment analysis modeling of performance efficiency of banks using random forest and entropy of information," Annals of Operations Research, Springer, vol. 308(1), pages 63-92, January.
    4. Toloo, Mehdi & Hančlová, Jana, 2020. "Multi-valued measures in DEA in the presence of undesirable outputs," Omega, Elsevier, vol. 94(C).
    5. Doumpos, Michalis & Zopounidis, Constantin & Gounopoulos, Dimitrios & Platanakis, Emmanouil & Zhang, Wenke, 2023. "Operational research and artificial intelligence methods in banking," European Journal of Operational Research, Elsevier, vol. 306(1), pages 1-16.
    6. Ján Dobrovič & Veronika Čabinová & Peter Gallo & Petra Partlová & Jan Váchal & Beáta Balogová & Jozef Orgonáš, 2021. "Application of the DEA Model in Tourism SMEs: An Empirical Study from Slovakia in the Context of Business Sustainability," Sustainability, MDPI, vol. 13(13), pages 1-19, July.
    7. Villanueva-Cantillo, Jeyms & Munoz-Marquez, Manuel, 2021. "Methodology for calculating critical values of relevance measures in variable selection methods in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 290(2), pages 657-670.
    8. Liesiö, Juuso & Andelmin, Juho & Salo, Ahti, 2020. "Efficient allocation of resources to a portfolio of decision making units," European Journal of Operational Research, Elsevier, vol. 286(2), pages 619-636.
    9. Toloo, Mehdi & Keshavarz, Esmaeil & Hatami-Marbini, Adel, 2021. "Selecting data envelopment analysis models: A data-driven application to EU countries," Omega, Elsevier, vol. 101(C).
    10. Delimiro Visbal-Cadavid & Mónica Martínez-Gómez & Francisco Guijarro, 2017. "Assessing the Efficiency of Public Universities through DEA. A Case Study," Sustainability, MDPI, vol. 9(8), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jamal Ouenniche & Skarleth Carrales, 2018. "Assessing efficiency profiles of UK commercial banks: a DEA analysis with regression-based feedback," Annals of Operations Research, Springer, vol. 266(1), pages 551-587, July.
    2. Nataraja, Niranjan R. & Johnson, Andrew L., 2011. "Guidelines for using variable selection techniques in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 215(3), pages 662-669, December.
    3. Anna Łozowicka & Bartłomiej Lach, 2022. "CI-DEA: A Way to Improve the Discriminatory Power of DEA—Using the Example of the Efficiency Assessment of the Digitalization in the Life of the Generation 50+," Sustainability, MDPI, vol. 14(6), pages 1-22, March.
    4. Villanueva-Cantillo, Jeyms & Munoz-Marquez, Manuel, 2021. "Methodology for calculating critical values of relevance measures in variable selection methods in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 290(2), pages 657-670.
    5. Imad Bou-Hamad & Abdel Latef Anouze & Ibrahim H. Osman, 2022. "A cognitive analytics management framework to select input and output variables for data envelopment analysis modeling of performance efficiency of banks using random forest and entropy of information," Annals of Operations Research, Springer, vol. 308(1), pages 63-92, January.
    6. Toloo, Mehdi & Tone, Kaoru & Izadikhah, Mohammad, 2023. "Selecting slacks-based data envelopment analysis models," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1302-1318.
    7. Peyrache, Antonio & Rose, Christiern & Sicilia, Gabriela, 2020. "Variable selection in Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 282(2), pages 644-659.
    8. Yongjun Li & Xiao Shi & Min Yang & Liang Liang, 2017. "Variable selection in data envelopment analysis via Akaike’s information criteria," Annals of Operations Research, Springer, vol. 253(1), pages 453-476, June.
    9. Zelenyuk, Valentin, 2020. "Aggregation of inputs and outputs prior to Data Envelopment Analysis under big data," European Journal of Operational Research, Elsevier, vol. 282(1), pages 172-187.
    10. Aggelopoulos, Eleftherios & Georgopoulos, Antonios, 2017. "Bank branch efficiency under environmental change: A bootstrap DEA on monthly profit and loss accounting statements of Greek retail branches," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1170-1188.
    11. Valentin Zelenyuk, 2019. "Data Envelopment Analysis and Business Analytics: The Big Data Challenges and Some Solutions," CEPA Working Papers Series WP072019, School of Economics, University of Queensland, Australia.
    12. Qiwei Xie & Yuanyuan Li & Lizheng Wang & Chao Liu, 2018. "Improving discrimination in data envelopment analysis without losing information based on Renyi’s entropy," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(4), pages 1053-1068, December.
    13. Raul Moragues & Juan Aparicio & Miriam Esteve, 2023. "Ranking the Importance of Variables in a Nonparametric Frontier Analysis Using Unsupervised Machine Learning Techniques," Mathematics, MDPI, vol. 11(11), pages 1-24, June.
    14. Toloo, Mehdi & Keshavarz, Esmaeil & Hatami-Marbini, Adel, 2021. "Selecting data envelopment analysis models: A data-driven application to EU countries," Omega, Elsevier, vol. 101(C).
    15. Eskelinen, Juha & Halme, Merja & Kallio, Markku, 2014. "Bank branch sales evaluation using extended value efficiency analysis," European Journal of Operational Research, Elsevier, vol. 232(3), pages 654-663.
    16. Bojiang Yang & Youliang Zhang & Hongjun Zhang & Rui Zhang & Baoyu Xu, 2016. "Factor-specific Malmquist productivity index based on common weights DEA," Operational Research, Springer, vol. 16(1), pages 51-70, April.
    17. Kyuseok Lee & Kyuwan Choi, 2010. "Cross redundancy and sensitivity in DEA models," Journal of Productivity Analysis, Springer, vol. 34(2), pages 151-165, October.
    18. Charles, Vincent & Aparicio, Juan & Zhu, Joe, 2019. "The curse of dimensionality of decision-making units: A simple approach to increase the discriminatory power of data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 279(3), pages 929-940.
    19. Esteve, Miriam & Aparicio, Juan & Rodriguez-Sala, Jesus J. & Zhu, Joe, 2023. "Random Forests and the measurement of super-efficiency in the context of Free Disposal Hull," European Journal of Operational Research, Elsevier, vol. 304(2), pages 729-744.
    20. Halme, Merja & Korhonen, Pekka & Eskelinen, Juha, 2014. "Non-convex value efficiency analysis and its application to bank branch sales evaluation," Omega, Elsevier, vol. 48(C), pages 10-18.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:259:y:2017:i:2:p:778-788. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.