IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v308y2022i1d10.1007_s10479-021-04024-0.html
   My bibliography  Save this article

A cognitive analytics management framework to select input and output variables for data envelopment analysis modeling of performance efficiency of banks using random forest and entropy of information

Author

Listed:
  • Imad Bou-Hamad

    (Olayan School of Business, American University of Beirut)

  • Abdel Latef Anouze

    (Qatar University)

  • Ibrahim H. Osman

    (Olayan School of Business, American University of Beirut)

Abstract

The efficiency of banks has a critical role in development of sound financial systems of countries. Data Envelopment Analysis (DEA) has witnessed an increase in popularity for modeling the performance efficiency of banks. Such efficiency depends on the appropriate selection of input and output variables. In literature, no agreement exists on the selection of relevant variables. The disagreement has been an on-going debate among academic experts, and no diagnostic tools exist to identify variable misspecifications. A cognitive analytics management framework is proposed using three processes to address misspecifications. The cognitive process conducts an extensive review to identify the most common set of variables. The analytics process integrates a random forest method; a simulation method with a DEA measurement feedback; and Shannon Entropy to select the best DEA model and its relevant variables. Finally, a management process discusses the managerial insights to manage performance and impacts. A sample of data is collected on 303 top-world banks for the periods 2013 to 2015 from 49 countries. The experimental simulation results identified the best DEA model along with its associated variables, and addressed the misclassification of the total deposits. The paper concludes with the limitations and future research directions.

Suggested Citation

  • Imad Bou-Hamad & Abdel Latef Anouze & Ibrahim H. Osman, 2022. "A cognitive analytics management framework to select input and output variables for data envelopment analysis modeling of performance efficiency of banks using random forest and entropy of information," Annals of Operations Research, Springer, vol. 308(1), pages 63-92, January.
  • Handle: RePEc:spr:annopr:v:308:y:2022:i:1:d:10.1007_s10479-021-04024-0
    DOI: 10.1007/s10479-021-04024-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-04024-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-04024-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Nan-Kuang, 2001. "Bank net worth, asset prices and economic activity," Journal of Monetary Economics, Elsevier, vol. 48(2), pages 415-436, October.
    2. Benston, George J & Smith, Clifford W, Jr, 1976. "A Transactions Cost Approach to the Theory of Financial Intermediation," Journal of Finance, American Finance Association, vol. 31(2), pages 215-231, May.
    3. Andor, Mark A. & Parmeter, Christopher & Sommer, Stephan, 2019. "Combining uncertainty with uncertainty to get certainty? Efficiency analysis for regulation purposes," European Journal of Operational Research, Elsevier, vol. 274(1), pages 240-252.
    4. Muliaman Hadad & Maximilian Hall & Karligash Kenjegalieva & Wimboh Santoso & Richard Simper, 2011. "Banking efficiency and stock market performance: an analysis of listed Indonesian banks," Review of Quantitative Finance and Accounting, Springer, vol. 37(1), pages 1-20, July.
    5. Henry Tulkens & Philippe Eeckaut, 2006. "Nonparametric Efficiency, Progress and Regress Measures For Panel Data: Methodological Aspects," Springer Books, in: Parkash Chander & Jacques Drèze & C. Knox Lovell & Jack Mintz (ed.), Public goods, environmental externalities and fiscal competition, chapter 0, pages 395-429, Springer.
    6. Lang, Gunter & Welzel, Peter, 1996. "Efficiency and technical progress in banking Empirical results for a panel of German cooperative banks," Journal of Banking & Finance, Elsevier, vol. 20(6), pages 1003-1023, July.
    7. Sharma, Mithun J. & Yu, Song Jin, 2015. "Stepwise regression data envelopment analysis for variable reduction," Applied Mathematics and Computation, Elsevier, vol. 253(C), pages 126-134.
    8. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    9. Jesús T. Pastor & JosÉ L. Ruiz & Inmaculada Sirvent, 2002. "A Statistical Test for Nested Radial Dea Models," Operations Research, INFORMS, vol. 50(4), pages 728-735, August.
    10. Dekker, David & Post, Thierry, 2001. "A quasi-concave DEA model with an application for bank branch performance evaluation," European Journal of Operational Research, Elsevier, vol. 132(2), pages 296-311, July.
    11. Nataraja, Niranjan R. & Johnson, Andrew L., 2011. "Guidelines for using variable selection techniques in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 215(3), pages 662-669, December.
    12. Bian, Yiwen & Yang, Feng, 2010. "Resource and environment efficiency analysis of provinces in China: A DEA approach based on Shannon's entropy," Energy Policy, Elsevier, vol. 38(4), pages 1909-1917, April.
    13. Tser-Yieth Chen, 1998. "A study of bank efficiency and ownership in Taiwan," Applied Economics Letters, Taylor & Francis Journals, vol. 5(10), pages 613-616.
    14. Rezvanian, Rasoul & Mehdian, Seyed, 2002. "An examination of cost structure and production performance of commercial banks in Singapore," Journal of Banking & Finance, Elsevier, vol. 26(1), pages 79-98, January.
    15. N Adler & B Golany, 2002. "Including principal component weights to improve discrimination in data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(9), pages 985-991, September.
    16. Zhu, Joe, 2000. "Multi-factor performance measure model with an application to Fortune 500 companies," European Journal of Operational Research, Elsevier, vol. 123(1), pages 105-124, May.
    17. Jamal Ouenniche & Skarleth Carrales, 2018. "Assessing efficiency profiles of UK commercial banks: a DEA analysis with regression-based feedback," Annals of Operations Research, Springer, vol. 266(1), pages 551-587, July.
    18. Abhiman Das & Saibal Ghosh, 2006. "Financial deregulation and efficiency: An empirical analysis of Indian banks during the post reform period," Review of Financial Economics, John Wiley & Sons, vol. 15(3), pages 193-221.
    19. Ana Lozano-Vivas & Jesús Pastor & José Pastor, 2002. "An Efficiency Comparison of European Banking Systems Operating under Different Environmental Conditions," Journal of Productivity Analysis, Springer, vol. 18(1), pages 59-77, July.
    20. Peter Smith, 1997. "Model misspecification in Data Envelopment Analysis," Annals of Operations Research, Springer, vol. 73(0), pages 233-252, October.
    21. Tser-Yieth Chen, 2004. "A study of cost efficiency and privatisation in Taiwan's banks: the impact of the Asian financial crisis," The Service Industries Journal, Taylor & Francis Journals, vol. 24(5), pages 137-151, September.
    22. Osman, Ibrahim H. & Anouze, Abdel Latef & Irani, Zahir & Lee, Habin & Medeni, Tunç D. & Weerakkody, Vishanth, 2019. "A cognitive analytics management framework for the transformation of electronic government services from users’ perspective to create sustainable shared values," European Journal of Operational Research, Elsevier, vol. 278(2), pages 514-532.
    23. Sealey, Calvin W, Jr & Lindley, James T, 1977. "Inputs, Outputs, and a Theory of Production and Cost at Depository Financial Institutions," Journal of Finance, American Finance Association, vol. 32(4), pages 1251-1266, September.
    24. Athanassopoulos, Antreas D., 1997. "Service quality and operating efficiency synergies for management control in the provision of financial services: Evidence from Greek bank branches," European Journal of Operational Research, Elsevier, vol. 98(2), pages 300-313, April.
    25. Petropoulos, Anastasios & Siakoulis, Vasilis & Stavroulakis, Evangelos & Vlachogiannakis, Nikolaos E., 2020. "Predicting bank insolvencies using machine learning techniques," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1092-1113.
    26. Lo, Shih-Fang & Lu, Wen-Min, 2009. "An integrated performance evaluation of financial holding companies in Taiwan," European Journal of Operational Research, Elsevier, vol. 198(1), pages 341-350, October.
    27. Khan, Abu & Hassan, M. Kabir & Maroney, Neal & Boujlil, Rhada & Ozkan, Bora, 2020. "Efficiency, diversification, and performance of US banks," International Review of Economics & Finance, Elsevier, vol. 67(C), pages 101-117.
    28. Golany, B & Roll, Y, 1989. "An application procedure for DEA," Omega, Elsevier, vol. 17(3), pages 237-250.
    29. Sepideh Kaffash & Reza Kazemi Matin & Mohammad Tajik, 2018. "A directional semi-oriented radial DEA measure: an application on financial stability and the efficiency of banks," Annals of Operations Research, Springer, vol. 264(1), pages 213-234, May.
    30. Imad Bou-Hamad & Abdel Latef Anouze & Denis Larocque, 2017. "An integrated approach of data envelopment analysis and boosted generalized linear mixed models for efficiency assessment," Annals of Operations Research, Springer, vol. 253(1), pages 77-95, June.
    31. Tsionas, Efthymios G. & Papadakis, Emmanuel N., 2010. "A Bayesian approach to statistical inference in stochastic DEA," Omega, Elsevier, vol. 38(5), pages 309-314, October.
    32. Emrouznejad, Ali & Anouze, Abdel Latef & Thanassoulis, Emmanuel, 2010. "A semi-oriented radial measure for measuring the efficiency of decision making units with negative data, using DEA," European Journal of Operational Research, Elsevier, vol. 200(1), pages 297-304, January.
    33. Mu-Jen Chen & Yung-ho Chiu & Chyanlong Jan & Yu-Chuan Chen & Hsiang-Hsi Liu, 2015. "Efficiency and Risk in Commercial Banks - Hybrid DEA Estimation," Global Economic Review, Taylor & Francis Journals, vol. 44(3), pages 335-352, September.
    34. Allen N. Berger & David B. Humphrey, 1992. "Measurement and Efficiency Issues in Commercial Banking," NBER Chapters, in: Output Measurement in the Service Sectors, pages 245-300, National Bureau of Economic Research, Inc.
    35. Liu, Junming & Tone, Kaoru, 2008. "A multistage method to measure efficiency and its application to Japanese banking industry," Socio-Economic Planning Sciences, Elsevier, vol. 42(2), pages 75-91, June.
    36. Margaret Brown & Edward P.M. Gardener, 2004. "A frontier analysis comparison of banking ‘added value’," The Service Industries Journal, Taylor & Francis Journals, vol. 24(4), pages 41-65, July.
    37. Amir Moradi-Motlagh & Ali Salman Saleh, 2014. "Re-Examining the Technical Efficiency of Australian Banks: A Bootstrap DEA Approach," Australian Economic Papers, Wiley Blackwell, vol. 53(1-2), pages 112-128, June.
    38. Jianhui Xie & Xiaoxuan Zhu & Liang Liang, 2020. "A multiplicative method for estimating the potential gains from two-stage production system mergers," Annals of Operations Research, Springer, vol. 288(1), pages 475-493, May.
    39. Emrouznejad, Ali & Amin, Gholam R. & Thanassoulis, Emmanuel & Anouze, Abdel Latef, 2010. "On the boundedness of the SORM DEA models with negative data," European Journal of Operational Research, Elsevier, vol. 206(1), pages 265-268, October.
    40. Hartman, Thomas E. & Storbeck, James E. & Byrnes, Patricia, 2001. "Allocative efficiency in branch banking," European Journal of Operational Research, Elsevier, vol. 134(2), pages 232-242, October.
    41. Mahmoudabadi, Mohammad Zarei & Emrouznejad, Ali, 2019. "Comprehensive performance evaluation of banking branches: A three-stage slacks-based measure (SBM) data envelopment analysis," International Review of Economics & Finance, Elsevier, vol. 64(C), pages 359-376.
    42. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    43. Tanaka, Katsuyuki & Kinkyo, Takuji & Hamori, Shigeyuki, 2016. "Random forests-based early warning system for bank failures," Economics Letters, Elsevier, vol. 148(C), pages 118-121.
    44. Tortosa-Ausina, Emili, 2004. "An alternative conditioning scheme to explain efficiency differentials in banking," Economics Letters, Elsevier, vol. 82(2), pages 147-155, February.
    45. Franz R. Hahn, 2009. "A Note on Management Efficiency and International Banking. Some Empirical Panel Evidence," Journal of Applied Economics, Taylor & Francis Journals, vol. 12(1), pages 69-81, May.
    46. Belasri, Sanaa & Gomes, Mathieu & Pijourlet, Guillaume, 2020. "Corporate social responsibility and bank efficiency," Journal of Multinational Financial Management, Elsevier, vol. 54(C).
    47. Carlos Pestana Barros & Nicolas Peypoch & Jonathan Williams, 2010. "A note on productivity change in European cooperative banks: the Luenberger indicator approach," International Review of Applied Economics, Taylor & Francis Journals, vol. 24(2), pages 137-147.
    48. Barbara Casu & Claudia Girardone, 2005. "An analysis of the relevance of off-balance sheet items in explaining productivity change in European banking," Applied Financial Economics, Taylor & Francis Journals, vol. 15(15), pages 1053-1061.
    49. Tser-Yieth Chen & TSER-LIEN YEH, 2000. "A Measurement of Bank Efficiency, Ownership and Productivity Changes in Taiwan," The Service Industries Journal, Taylor & Francis Journals, vol. 20(1), pages 95-109, January.
    50. Barbara Casu & Philip Molyneux, 2003. "A comparative study of efficiency in European banking," Applied Economics, Taylor & Francis Journals, vol. 35(17), pages 1865-1876.
    51. Benítez-Peña, Sandra & Bogetoft, Peter & Romero Morales, Dolores, 2020. "Feature Selection in Data Envelopment Analysis: A Mathematical Optimization approach," Omega, Elsevier, vol. 96(C).
    52. John Ruggiero, 2005. "Impact Assessment Of Input Omission On Dea," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 4(03), pages 359-368.
    53. Spokeviciute, Laima & Keasey, Kevin & Vallascas, Francesco, 2019. "Do financial crises cleanse the banking industry? Evidence from US commercial bank exits," Journal of Banking & Finance, Elsevier, vol. 99(C), pages 222-236.
    54. Cesar Oliveira & Benjamin Tabak, 2005. "An International Comparison of Banking Sectors: A DEA Approach," Global Economic Review, Taylor & Francis Journals, vol. 34(3), pages 291-307.
    55. Rachita Gulati & Sunil Kumar, 2017. "Analysing banks’ intermediation and operating efficiencies using the two-stage network DEA model," International Journal of Productivity and Performance Management, Emerald Group Publishing Limited, vol. 66(4), pages 500-516, April.
    56. Joe Zhu, 2014. "Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Quantitative Models for Performance Evaluation and Benchmarking, edition 3, chapter 1, pages 1-9, Springer.
    57. Paradi, Joseph C. & Zhu, Haiyan, 2013. "A survey on bank branch efficiency and performance research with data envelopment analysis," Omega, Elsevier, vol. 41(1), pages 61-79.
    58. Tser-Yieth Chen, 2002. "Measuring firm performance with DEA and prior information in Taiwan's banks," Applied Economics Letters, Taylor & Francis Journals, vol. 9(3), pages 201-204.
    59. Wagner, Janet M. & Shimshak, Daniel G., 2007. "Stepwise selection of variables in data envelopment analysis: Procedures and managerial perspectives," European Journal of Operational Research, Elsevier, vol. 180(1), pages 57-67, July.
    60. Cook, Wade D. & Tone, Kaoru & Zhu, Joe, 2014. "Data envelopment analysis: Prior to choosing a model," Omega, Elsevier, vol. 44(C), pages 1-4.
    61. George J. Benston, 1965. "Branch Banking And Economies Of Scale," Journal of Finance, American Finance Association, vol. 20(2), pages 312-331, May.
    62. B. Golany & J. E. Storbeck, 1999. "A Data Envelopment Analysis of the Operational Efficiency of Bank Branches," Interfaces, INFORMS, vol. 29(3), pages 14-26, June.
    63. Sanaa Belasri & Mathieu Gomes & Guillaume Pijourlet, 2020. "Corporate social responsibility and bank efficiency," Post-Print hal-02434348, HAL.
    64. Park, Kang H. & Weber, William L., 2006. "A note on efficiency and productivity growth in the Korean Banking Industry, 1992-2002," Journal of Banking & Finance, Elsevier, vol. 30(8), pages 2371-2386, August.
    65. Holod, Dmytro & Lewis, Herbert F., 2011. "Resolving the deposit dilemma: A new DEA bank efficiency model," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 2801-2810, November.
    66. Canhoto, Ana & Dermine, Jean, 2003. "A note on banking efficiency in Portugal, New vs. Old banks," Journal of Banking & Finance, Elsevier, vol. 27(11), pages 2087-2098, November.
    67. Lee, Chia-Yen & Cai, Jia-Ying, 2020. "LASSO variable selection in data envelopment analysis with small datasets," Omega, Elsevier, vol. 91(C).
    68. Ferrier, Gary D. & Lovell, C. A. Knox, 1990. "Measuring cost efficiency in banking : Econometric and linear programming evidence," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 229-245.
    69. Aziz KUTLAR & Ali KABASAKAL & Adem BABACAN, 2015. "Dynamic Efficiency of Turkish Banks: a DEA Window and Malmquist Index Analysis for the Period of 2003-2012," Sosyoekonomi Journal, Sosyoekonomi Society, issue 23(24).
    70. Peyrache, Antonio & Rose, Christiern & Sicilia, Gabriela, 2020. "Variable selection in Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 282(2), pages 644-659.
    71. Wang, Qunwei & Zhao, Zengyao & Zhou, Peng & Zhou, Dequn, 2013. "Energy efficiency and production technology heterogeneity in China: A meta-frontier DEA approach," Economic Modelling, Elsevier, vol. 35(C), pages 283-289.
    72. Fang, Jianchun & Lau, Chi-Keung Marco & Lu, Zhou & Tan, Yong & Zhang, Hua, 2019. "Bank performance in China: A Perspective from Bank efficiency, risk-taking and market competition," Pacific-Basin Finance Journal, Elsevier, vol. 56(C), pages 290-309.
    73. Eskelinen, Juha, 2017. "Comparison of variable selection techniques for data envelopment analysis in a retail bank," European Journal of Operational Research, Elsevier, vol. 259(2), pages 778-788.
    74. A S Camanho & R G Dyson, 2005. "Cost efficiency, production and value-added models in the analysis of bank branch performance," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(5), pages 483-494, May.
    75. Konara, Palitha & Tan, Yong & Johnes, Jill, 2019. "FDI and heterogeneity in bank efficiency: Evidence from emerging markets," Research in International Business and Finance, Elsevier, vol. 49(C), pages 100-113.
    76. Z Yang, 2009. "Assessing the performance of Canadian bank branches using data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(6), pages 771-780, June.
    77. Subhash Ray, 2007. "Are some Indian banks too large? An examination of size efficiency in Indian banking," Journal of Productivity Analysis, Springer, vol. 27(1), pages 41-56, February.
    78. Yongjun Li & Xiao Shi & Min Yang & Liang Liang, 2017. "Variable selection in data envelopment analysis via Akaike’s information criteria," Annals of Operations Research, Springer, vol. 253(1), pages 453-476, June.
    79. Jenkins, Larry & Anderson, Murray, 2003. "A multivariate statistical approach to reducing the number of variables in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 147(1), pages 51-61, May.
    80. Seiford, Lawrence M. & Zhu, Joe, 1998. "Stability regions for maintaining efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 108(1), pages 127-139, July.
    81. L Neralić & R E Wendell, 2004. "Sensitivity in data envelopment analysis using an approximate inverse matrix," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(11), pages 1187-1193, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olga Vl. Bitkina & Jaehyun Park & Hyun K. Kim, 2022. "Measuring User-Perceived Characteristics for Banking Services: Proposing a Methodology," IJERPH, MDPI, vol. 19(4), pages 1-15, February.
    2. Léopold Simar & Paul W. Wilson, 2023. "Another look at productivity growth in industrialized countries," Journal of Productivity Analysis, Springer, vol. 60(3), pages 257-272, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jamal Ouenniche & Skarleth Carrales, 2018. "Assessing efficiency profiles of UK commercial banks: a DEA analysis with regression-based feedback," Annals of Operations Research, Springer, vol. 266(1), pages 551-587, July.
    2. Raul Moragues & Juan Aparicio & Miriam Esteve, 2023. "Ranking the Importance of Variables in a Nonparametric Frontier Analysis Using Unsupervised Machine Learning Techniques," Mathematics, MDPI, vol. 11(11), pages 1-24, June.
    3. Fethi, Meryem Duygun & Pasiouras, Fotios, 2010. "Assessing bank efficiency and performance with operational research and artificial intelligence techniques: A survey," European Journal of Operational Research, Elsevier, vol. 204(2), pages 189-198, July.
    4. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    5. Toloo, Mehdi & Hančlová, Jana, 2020. "Multi-valued measures in DEA in the presence of undesirable outputs," Omega, Elsevier, vol. 94(C).
    6. Villanueva-Cantillo, Jeyms & Munoz-Marquez, Manuel, 2021. "Methodology for calculating critical values of relevance measures in variable selection methods in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 290(2), pages 657-670.
    7. Esteve, Miriam & Aparicio, Juan & Rodriguez-Sala, Jesus J. & Zhu, Joe, 2023. "Random Forests and the measurement of super-efficiency in the context of Free Disposal Hull," European Journal of Operational Research, Elsevier, vol. 304(2), pages 729-744.
    8. Anna Łozowicka & Bartłomiej Lach, 2022. "CI-DEA: A Way to Improve the Discriminatory Power of DEA—Using the Example of the Efficiency Assessment of the Digitalization in the Life of the Generation 50+," Sustainability, MDPI, vol. 14(6), pages 1-22, March.
    9. Quaranta, Anna Grazia & Raffoni, Anna & Visani, Franco, 2018. "A multidimensional approach to measuring bank branch efficiency," European Journal of Operational Research, Elsevier, vol. 266(2), pages 746-760.
    10. Vaneet Bhatia & Sankarshan Basu & Subrata Kumar Mitra & Pradyumna Dash, 2018. "A review of bank efficiency and productivity," OPSEARCH, Springer;Operational Research Society of India, vol. 55(3), pages 557-600, November.
    11. Nataraja, Niranjan R. & Johnson, Andrew L., 2011. "Guidelines for using variable selection techniques in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 215(3), pages 662-669, December.
    12. Mai, Nhat Chi, 2015. "Efficiency of the banking system in Vietnam under financial liberalization," OSF Preprints qsf6d, Center for Open Science.
    13. Charles, Vincent & Aparicio, Juan & Zhu, Joe, 2019. "The curse of dimensionality of decision-making units: A simple approach to increase the discriminatory power of data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 279(3), pages 929-940.
    14. Peyrache, Antonio & Rose, Christiern & Sicilia, Gabriela, 2020. "Variable selection in Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 282(2), pages 644-659.
    15. Benítez-Peña, Sandra & Bogetoft, Peter & Romero Morales, Dolores, 2020. "Feature Selection in Data Envelopment Analysis: A Mathematical Optimization approach," Omega, Elsevier, vol. 96(C).
    16. Eskelinen, Juha, 2017. "Comparison of variable selection techniques for data envelopment analysis in a retail bank," European Journal of Operational Research, Elsevier, vol. 259(2), pages 778-788.
    17. Vincent Charles & Ioannis E. Tsolas & Tatiana Gherman, 2018. "Satisficing data envelopment analysis: a Bayesian approach for peer mining in the banking sector," Annals of Operations Research, Springer, vol. 269(1), pages 81-102, October.
    18. Özlem O. Akdeniz & Hussein A. Abdou & Ali I. Hayek & Jacinta C. Nwachukwu & Ahmed A. Elamer & Chris Pyke, 2024. "Technical efficiency in banks: a review of methods, recent innovations and future research agenda," Review of Managerial Science, Springer, vol. 18(11), pages 3395-3456, November.
    19. Paradi, Joseph C. & Zhu, Haiyan, 2013. "A survey on bank branch efficiency and performance research with data envelopment analysis," Omega, Elsevier, vol. 41(1), pages 61-79.
    20. Johann Burgstaller, 2020. "Retail‐bank efficiency: Nonstandard goals and environmental determinants," Annals of Public and Cooperative Economics, Wiley Blackwell, vol. 91(2), pages 269-301, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:308:y:2022:i:1:d:10.1007_s10479-021-04024-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.