IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v16y2016i2d10.1007_s12351-015-0201-1.html
   My bibliography  Save this article

A modified SBM-NDEA approach for the efficiency measurement in bank branches

Author

Listed:
  • Fatemeh Boloori

    (Azarbaijan Shahid Madani University)

  • Jafar Pourmahmoud

    (Azarbaijan Shahid Madani University)

Abstract

Efficiency measurement has been an essential topic in banking research. Many studies have used the data envelopment analysis approach as an effective tool for the efficiency measurement of bank branches. Recently, the Network (NDEA) method has been introduced, which involves internal processes and intermediate factors in the efficiency measurement. A few studies have used this method for the efficiency measurement of bank branches; they have considered two processes in branches and used two-stage models. In this study, we will use a more general approach and a more complete network structure consisting of three processes, including the deposit attraction process, deposit allocation process and banking services provision process. Since we want to obtain efficient targets, an envelopment form of the NDEA model had to be used. Therefore, a slack-based NDEA model, as introduced by Tone and Tsutsui (SBM-NDEA), was nominated to support its mathematical model. But according to the new categorization of the efficiency measurement factors introduced in this paper, and also regarding some previous reviews on SBM-NDEA model, the model will be modified to include the desired properties. Finally, by applying the modified model, branches efficiency scores and also efficient targets will be obtained.

Suggested Citation

  • Fatemeh Boloori & Jafar Pourmahmoud, 2016. "A modified SBM-NDEA approach for the efficiency measurement in bank branches," Operational Research, Springer, vol. 16(2), pages 301-326, July.
  • Handle: RePEc:spr:operea:v:16:y:2016:i:2:d:10.1007_s12351-015-0201-1
    DOI: 10.1007/s12351-015-0201-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-015-0201-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-015-0201-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rolf Färe & Shawna Grosskopf & Gerald Whittaker, 2014. "Network DEA II," International Series in Operations Research & Management Science, in: Wade D. Cook & Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 0, pages 307-327, Springer.
    2. Matthews, Kent, 2013. "Risk management and managerial efficiency in Chinese banks: A network DEA framework," Omega, Elsevier, vol. 41(2), pages 207-215.
    3. Tone, Kaoru & Tsutsui, Miki, 2009. "Network DEA: A slacks-based measure approach," European Journal of Operational Research, Elsevier, vol. 197(1), pages 243-252, August.
    4. Berger, Allen N. & Humphrey, David B., 1997. "Efficiency of financial institutions: International survey and directions for future research," European Journal of Operational Research, Elsevier, vol. 98(2), pages 175-212, April.
    5. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    6. Kao, Chiang & Hwang, Shiuh-Nan, 2008. "Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan," European Journal of Operational Research, Elsevier, vol. 185(1), pages 418-429, February.
    7. Jesús Pastor & C. Lovell & Henry Tulkens, 2006. "Evaluating the financial performance of bank branches," Annals of Operations Research, Springer, vol. 145(1), pages 321-337, July.
    8. Chen, Yao & Cook, Wade D. & Kao, Chiang & Zhu, Joe, 2013. "Network DEA pitfalls: Divisional efficiency and frontier projection under general network structures," European Journal of Operational Research, Elsevier, vol. 226(3), pages 507-515.
    9. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    10. Yang, Chyan & Liu, Hsian-Ming, 2012. "Managerial efficiency in Taiwan bank branches: A network DEA," Economic Modelling, Elsevier, vol. 29(2), pages 450-461.
    11. Giokas, Dimitris I., 2008. "Assessing the efficiency in operations of a large Greek bank branch network adopting different economic behaviors," Economic Modelling, Elsevier, vol. 25(3), pages 559-574, May.
    12. Cook, Wade D. & Liang, Liang & Zhu, Joe, 2010. "Measuring performance of two-stage network structures by DEA: A review and future perspective," Omega, Elsevier, vol. 38(6), pages 423-430, December.
    13. Wanke, Peter & Barros, Carlos P. & Faria, João R., 2015. "Financial distress drivers in Brazilian banks: A dynamic slacks approach," European Journal of Operational Research, Elsevier, vol. 240(1), pages 258-268.
    14. Schaffnit, Claire & Rosen, Dan & Paradi, Joseph C., 1997. "Best practice analysis of bank branches: An application of DEA in a large Canadian bank," European Journal of Operational Research, Elsevier, vol. 98(2), pages 269-289, April.
    15. Fukuyama, Hirofumi & Mirdehghan, S.M., 2012. "Identifying the efficiency status in network DEA," European Journal of Operational Research, Elsevier, vol. 220(1), pages 85-92.
    16. Lin, Tzu-Yu & Chiu, Sheng-Hsiung, 2013. "Using independent component analysis and network DEA to improve bank performance evaluation," Economic Modelling, Elsevier, vol. 32(C), pages 608-616.
    17. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    18. Fethi, Meryem Duygun & Pasiouras, Fotios, 2010. "Assessing bank efficiency and performance with operational research and artificial intelligence techniques: A survey," European Journal of Operational Research, Elsevier, vol. 204(2), pages 189-198, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Victor John M. Cantor & Kim Leng Poh, 2020. "Efficiency measurement for general network systems: a slacks-based measure model," Journal of Productivity Analysis, Springer, vol. 54(1), pages 43-57, August.
    2. ZHAO Xin & XUE Yue-mei & KANG Wang-lin & DING Li-li & ZHU Lin, 2018. "Measuring Efficiency of Ocean Economy in China Based on a Novel Luenberger Approach," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 5-21, June.
    3. Lotfi, Farhad Hosseinzadeh & Saen, Reza Farzipoor & Moghaddas, Zohreh & Vaez-Ghasemi, Mohsen, 2023. "Using an SBM-NDEA model to assess the desirable and undesirable outputs of sustainable supply chain: A case study in wheat industry," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    4. Martin Bod′a & Emília Zimková, 2018. "Iso-analysis for knowing the sources of technical efficiency and performance," Operational Research, Springer, vol. 18(2), pages 421-449, July.
    5. Fatemeh Boloori & Rashed Khanjani-Shiraz & Hirofumi Fukuyama, 2021. "Relative partial efficiency: network and black box SBM DEA interpretations in multiplier form," Operational Research, Springer, vol. 21(4), pages 2689-2718, December.
    6. Doumpos, Michalis & Zopounidis, Constantin & Gounopoulos, Dimitrios & Platanakis, Emmanouil & Zhang, Wenke, 2023. "Operational research and artificial intelligence methods in banking," European Journal of Operational Research, Elsevier, vol. 306(1), pages 1-16.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    2. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    3. Huang, Tai-Hsin & Chen, Kuan-Chen & Lin, Chung-I, 2018. "An extension from network DEA to copula-based network SFA: Evidence from the U.S. commercial banks in 2009," The Quarterly Review of Economics and Finance, Elsevier, vol. 67(C), pages 51-62.
    4. Khoveyni, Mohammad & Fukuyama, Hirofumi & Eslami, Robabeh & Yang, Guo-liang, 2019. "Variations effect of intermediate products on the second stage in two-stage processes," Omega, Elsevier, vol. 85(C), pages 35-48.
    5. Victor John M. Cantor & Kim Leng Poh, 2020. "Efficiency measurement for general network systems: a slacks-based measure model," Journal of Productivity Analysis, Springer, vol. 54(1), pages 43-57, August.
    6. Yang, Chyan & Liu, Hsian-Ming, 2012. "Managerial efficiency in Taiwan bank branches: A network DEA," Economic Modelling, Elsevier, vol. 29(2), pages 450-461.
    7. Liu, Wenbin & Zhou, Zhongbao & Ma, Chaoqun & Liu, Debin & Shen, Wanfang, 2015. "Two-stage DEA models with undesirable input-intermediate-outputs," Omega, Elsevier, vol. 56(C), pages 74-87.
    8. Mirdehghan, S. Morteza & Fukuyama, Hirofumi, 2016. "Pareto–Koopmans efficiency and network DEA," Omega, Elsevier, vol. 61(C), pages 78-88.
    9. Antonio Peyrache & Maria C. A. Silva, 2022. "Efficiency and Productivity Analysis from a System Perspective: Historical Overview," Springer Books, in: Duangkamon Chotikapanich & Alicia N. Rambaldi & Nicholas Rohde (ed.), Advances in Economic Measurement, chapter 0, pages 173-230, Springer.
    10. Dan Li & Yanfeng Li & Yeming Gong & Jiawei Yang, 2021. "Estimation of bank performance from multiple perspectives: an alternative solution to the deposit dilemma," Journal of Productivity Analysis, Springer, vol. 56(2), pages 151-170, December.
    11. Tatiana Bencova & Andrea Bohacikova, 2022. "DEA in Performance Measurement of Two-Stage Processes: Comparative Overview of the Literature," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 111-129.
    12. Sánchez-González, Carlos & Sarto, José Luis & Vicente, Luis, 2017. "The efficiency of mutual fund companies: Evidence from an innovative network SBM approach," Omega, Elsevier, vol. 71(C), pages 114-128.
    13. Huaqing Wu & Jingyu Yang & Wensheng Wu & Ya Chen, 2023. "Interest rate liberalization and bank efficiency: A DEA analysis of Chinese commercial banks," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(2), pages 467-498, June.
    14. Fukuyama, Hirofumi & Matousek, Roman, 2018. "Nerlovian revenue inefficiency in a bank production context: Evidence from Shinkin banks," European Journal of Operational Research, Elsevier, vol. 271(1), pages 317-330.
    15. Akther, Syed & Fukuyama, Hirofumi & Weber, William L., 2013. "Estimating two-stage network Slacks-based inefficiency: An application to Bangladesh banking," Omega, Elsevier, vol. 41(1), pages 88-96.
    16. Zha, Yong & Liang, Nannan & Wu, Maoguo & Bian, Yiwen, 2016. "Efficiency evaluation of banks in China: A dynamic two-stage slacks-based measure approach," Omega, Elsevier, vol. 60(C), pages 60-72.
    17. Lozano, Sebastián, 2016. "Slacks-based inefficiency approach for general networks with bad outputs: An application to the banking sector," Omega, Elsevier, vol. 60(C), pages 73-84.
    18. Pournader, Mehrdokht & Kach, Andrew & Fahimnia, Behnam & Sarkis, Joseph, 2019. "Outsourcing performance quality assessment using data envelopment analytics," International Journal of Production Economics, Elsevier, vol. 207(C), pages 173-182.
    19. Koronakos, Gregory & Sotiros, Dimitris & Despotis, Dimitris K. & Kritikos, Manolis N., 2022. "Fair efficiency decomposition in network DEA: A compromise programming approach," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    20. Ibrahim Alnafrah, 2021. "Efficiency evaluation of BRICS’s national innovation systems based on bias-corrected network data envelopment analysis," Journal of Innovation and Entrepreneurship, Springer, vol. 10(1), pages 1-28, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:16:y:2016:i:2:d:10.1007_s12351-015-0201-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.