A spatio-temporal model for binary data and its application in analyzing the direction of COVID-19 spread
Author
Abstract
Suggested Citation
DOI: 10.1007/s10182-024-00507-0
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Helmut Lütkepohl & Fang Xu, 2012.
"The role of the log transformation in forecasting economic variables,"
Empirical Economics, Springer, vol. 42(3), pages 619-638, June.
- Helmut Lütkepohl & Fang Xu, 2009. "The Role of the Log Transformation in Forecasting Economic Variables," CESifo Working Paper Series 2591, CESifo.
- Sudipto Banerjee & Alan E. Gelfand & Andrew O. Finley & Huiyan Sang, 2008. "Gaussian predictive process models for large spatial data sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 825-848, September.
- Cleo Anastassopoulou & Lucia Russo & Athanasios Tsakris & Constantinos Siettos, 2020. "Data-based analysis, modelling and forecasting of the COVID-19 outbreak," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-21, March.
- Gao, Mingyun & Yang, Honglin & Xiao, Qinzi & Goh, Mark, 2022. "COVID-19 lockdowns and air quality: Evidence from grey spatiotemporal forecasts," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
- Gareth O. Roberts & Jeffrey S. Rosenthal, 1999. "Convergence of Slice Sampler Markov Chains," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 643-660.
- Martinetti, Davide & Geniaux, Ghislain, 2017. "Approximate likelihood estimation of spatial probit models," Regional Science and Urban Economics, Elsevier, vol. 64(C), pages 30-45.
- Rohitash Chandra & Ayush Jain & Divyanshu Singh Chauhan, 2022. "Deep learning via LSTM models for COVID-19 infection forecasting in India," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-28, January.
- Lee, Duncan, 2013. "CARBayes: An R Package for Bayesian Spatial Modeling with Conditional Autoregressive Priors," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 55(i13).
- Ioannidis, John P.A. & Cripps, Sally & Tanner, Martin A., 2022. "Forecasting for COVID-19 has failed," International Journal of Forecasting, Elsevier, vol. 38(2), pages 423-438.
- Antonietta Mira & Luke Tierney, 2002. "Efficiency and Convergence Properties of Slice Samplers," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(1), pages 1-12, March.
- M Tiefelsdorf & D A Griffith & B Boots, 1999. "A Variance-Stabilizing Coding Scheme for Spatial Link Matrices," Environment and Planning A, , vol. 31(1), pages 165-180, January.
- Siddharth Rawat & Soudeep Deb, 2023. "A spatio-temporal statistical model to analyze COVID-19 spread in the USA," Journal of Applied Statistics, Taylor & Francis Journals, vol. 50(11-12), pages 2310-2329, September.
- Claudia Czado & Tilmann Gneiting & Leonhard Held, 2009. "Predictive Model Assessment for Count Data," Biometrics, The International Biometric Society, vol. 65(4), pages 1254-1261, December.
- Cécile Hardouin & Noel Cressie, 2018. "Two-scale spatial models for binary data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(1), pages 1-24, March.
- Kolassa, Stephan, 2016. "Evaluating predictive count data distributions in retail sales forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 788-803.
- Claudia Barría-Sandoval & Guillermo Ferreira & Katherine Benz-Parra & Pablo López-Flores, 2021. "Prediction of confirmed cases of and deaths caused by COVID-19 in Chile through time series techniques: A comparative study," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-16, April.
- Geir-Arne Fuglstad & Daniel Simpson & Finn Lindgren & Håvard Rue, 2019. "Constructing Priors that Penalize the Complexity of Gaussian Random Fields," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 445-452, January.
- Franzese, Robert J. & Hays, Jude C. & Cook, Scott J., 2016. "Spatial- and Spatiotemporal-Autoregressive Probit Models of Interdependent Binary Outcomes," Political Science Research and Methods, Cambridge University Press, vol. 4(1), pages 151-173, January.
- Ole F. Christensen & Rasmus Waagepetersen, 2002. "Bayesian Prediction of Spatial Count Data Using Generalized Linear Mixed Models," Biometrics, The International Biometric Society, vol. 58(2), pages 280-286, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Zhongxian Men & Adam W. Kolkiewicz & Tony S. Wirjanto, 2019. "Threshold Stochastic Conditional Duration Model for Financial Transaction Data," JRFM, MDPI, vol. 12(2), pages 1-21, May.
- Planas Christophe & Rossi Alessandro, 2024.
"The slice sampler and centrally symmetric distributions,"
Monte Carlo Methods and Applications, De Gruyter, vol. 30(3), pages 299-313.
- Planas, Christophe & Rossi, Alessandro, 2018. "The slice sampler and centrally symmetric distributions," JRC Working Papers in Economics and Finance 2018-11, Joint Research Centre, European Commission.
- Li, Yanxin & Walker, Stephen G., 2023. "A latent slice sampling algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
- V. A. Alegana & C. Pezzulo & A. J. Tatem & B. Omar & A. Christensen, 2021. "Mapping out-of-school adolescents and youths in low- and middle-income countries," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-10, December.
- Chib, Siddhartha, 2004. "Markov Chain Monte Carlo Technology," Papers 2004,22, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
- Xiaotian Zheng & Athanasios Kottas & Bruno Sansó, 2023. "Bayesian geostatistical modeling for discrete‐valued processes," Environmetrics, John Wiley & Sons, Ltd., vol. 34(7), November.
- Peter A. Gao & Hannah M. Director & Cecilia M. Bitz & Adrian E. Raftery, 2022. "Probabilistic Forecasts of Arctic Sea Ice Thickness," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 280-302, June.
- Sarlo, Rodrigo & Fernandes, Cristiano & Borenstein, Denis, 2023. "Lumpy and intermittent retail demand forecasts with score-driven models," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1146-1160.
- Wang, Craig & Furrer, Reinhard, 2021. "Combining heterogeneous spatial datasets with process-based spatial fusion models: A unifying framework," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
- Ekinci, Aykut, 2021. "Modelling and forecasting of growth rate of new COVID-19 cases in top nine affected countries: Considering conditional variance and asymmetric effect," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
- Nikoline N. Knudsen & Jörg Schullehner & Birgitte Hansen & Lisbeth F. Jørgensen & Søren M. Kristiansen & Denitza D. Voutchkova & Thomas A. Gerds & Per K. Andersen & Kristine Bihrmann & Morten Grønbæk , 2017. "Lithium in Drinking Water and Incidence of Suicide: A Nationwide Individual-Level Cohort Study with 22 Years of Follow-Up," IJERPH, MDPI, vol. 14(6), pages 1-13, June.
- Xia Li, 2024. "Unveiling Portfolio Resilience: Harnessing Asymmetric Copulas for Dynamic Risk Assessment in the Knowledge Economy," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(3), pages 10200-10226, September.
- Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
- Haoying Wang & Guohui Wu, 2022. "Modeling discrete choices with large fine-scale spatial data: opportunities and challenges," Journal of Geographical Systems, Springer, vol. 24(3), pages 325-351, July.
- Tatiyana V. Apanasovich & David Ruppert & Joanne R. Lupton & Natasa Popovic & Nancy D. Turner & Robert S. Chapkin & Raymond J. Carroll, 2008. "Aberrant Crypt Foci and Semiparametric Modeling of Correlated Binary Data," Biometrics, The International Biometric Society, vol. 64(2), pages 490-500, June.
- Ranadeep Daw & Christopher K. Wikle, 2023. "REDS: Random ensemble deep spatial prediction," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
- Andre Python & Andreas Bender & Marta Blangiardo & Janine B. Illian & Ying Lin & Baoli Liu & Tim C.D. Lucas & Siwei Tan & Yingying Wen & Davit Svanidze & Jianwei Yin, 2022. "A downscaling approach to compare COVID‐19 count data from databases aggregated at different spatial scales," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 202-218, January.
- Rao, Congjun & Zhang, Yue & Wen, Jianghui & Xiao, Xinping & Goh, Mark, 2023. "Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model," Energy, Elsevier, vol. 263(PC).
- Carrión-Flores, Carmen E. & Flores-Lagunes, Alfonso & Guci, Ledia, 2018. "An estimator for discrete-choice models with spatial lag dependence using large samples, with an application to land-use conversions," Regional Science and Urban Economics, Elsevier, vol. 69(C), pages 77-93.
More about this item
Keywords
Binary classification; Categorical data analysis; Coronavirus; Predictive clustering; Space-time processes;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:108:y:2024:i:4:d:10.1007_s10182-024-00507-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.