IDEAS home Printed from https://ideas.repec.org/p/ces/ceswps/_2591.html
   My bibliography  Save this paper

The Role of the Log Transformation in Forecasting Economic Variables

Author

Listed:
  • Helmut Lütkepohl
  • Fang Xu

Abstract

For forecasting and economic analysis many variables are used in logarithms (logs). In time series analysis this transformation is often considered to stabilize the variance of a series. We investigate under which conditions taking logs is beneficial for forecasting. Forecasts based on the original series are compared to forecasts based on logs. It is found that it depends on the data generation process whether the former or the latter are preferable. For a range of economic variables substantial forecasting improvements from taking logs are found if the log transformation actually stabilizes the variance of the underlying series. Using logs can be damaging for the forecast precision if a stable variance is not achieved.

Suggested Citation

  • Helmut Lütkepohl & Fang Xu, 2009. "The Role of the Log Transformation in Forecasting Economic Variables," CESifo Working Paper Series 2591, CESifo.
  • Handle: RePEc:ces:ceswps:_2591
    as

    Download full text from publisher

    File URL: https://www.cesifo.org/DocDL/cesifo1_wp2591.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Andrea Silvestrini & Matteo Salto & Laurent Moulin & David Veredas, 2008. "Monitoring and forecasting annual public deficit every month: the case of France," Empirical Economics, Springer, vol. 34(3), pages 493-524, June.
    2. Bénédicte Vidaillet & V. d'Estaintot & P. Abécassis, 2005. "Introduction," Post-Print hal-00287137, HAL.
    3. Helmut Lütkepohl & Fang Xu, 2012. "The role of the log transformation in forecasting economic variables," Empirical Economics, Springer, vol. 42(3), pages 619-638, June.
    4. Markku Lanne & Helmut Lütkepohl, 2008. "Identifying Monetary Policy Shocks via Changes in Volatility," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(6), pages 1131-1149, September.
    5. Corradi, Valentina & Swanson, Norman R., 2006. "The effect of data transformation on common cycle, cointegration, and unit root tests: Monte Carlo results and a simple test," Journal of Econometrics, Elsevier, vol. 132(1), pages 195-229, May.
    6. Sims, Christopher A. & Waggoner, Daniel F. & Zha, Tao, 2008. "Methods for inference in large multiple-equation Markov-switching models," Journal of Econometrics, Elsevier, vol. 146(2), pages 255-274, October.
    7. C. W. J. Granger & Jeff Hallman, 1991. "Nonlinear Transformations Of Integrated Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 12(3), pages 207-224, May.
    8. Philip Hans Franses & Michael McAleer, 1998. "Testing for Unit Roots and Non‐linear Transformations," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(2), pages 147-164, March.
    9. Arino, Miguel A. & Franses, Philip Hans, 2000. "Forecasting the levels of vector autoregressive log-transformed time series," International Journal of Forecasting, Elsevier, vol. 16(1), pages 111-116.
    10. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    11. Kramer, Walter & Davies, Laurie, 2002. "Testing for unit roots in the context of misspecified logarithmic random walks," Economics Letters, Elsevier, vol. 74(3), pages 313-319, February.
    12. Granger, C. W. J. & Newbold, P., 1976. "The use of R2 to determine the appropriate transformation of regression variables," Journal of Econometrics, Elsevier, vol. 4(3), pages 205-210, August.
    13. Christopher A. Sims & Tao Zha, 2006. "Were There Regime Switches in U.S. Monetary Policy?," American Economic Review, American Economic Association, vol. 96(1), pages 54-81, March.
    14. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    15. Franses, Philip Hans & Koop, Gary, 1998. "On the sensitivity of unit root inference to nonlinear data transformations," Economics Letters, Elsevier, vol. 59(1), pages 7-15, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Corradi, Valentina & Swanson, Norman R., 2006. "The effect of data transformation on common cycle, cointegration, and unit root tests: Monte Carlo results and a simple test," Journal of Econometrics, Elsevier, vol. 132(1), pages 195-229, May.
    2. repec:hum:wpaper:sfb649dp2014-009 is not listed on IDEAS
    3. Lütkepohl, Helmut & Velinov, Anton, 2016. "Structural Vector Autoregressions : Checking Identifying Long-Run Restrictions via Heteroskedasticity," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 30, pages 377-392.
    4. Mayr, Johannes & Ulbricht, Dirk, 2015. "Log versus level in VAR forecasting: 42 million empirical answers—Expect the unexpected," Economics Letters, Elsevier, vol. 126(C), pages 40-42.
    5. Helmut Lütkepohl & Aleksei NetŠunajev, 2014. "Disentangling Demand And Supply Shocks In The Crude Oil Market: How To Check Sign Restrictions In Structural Vars," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(3), pages 479-496, April.
    6. Helmut Lütkepohl, 2012. "Identifying Structural Vector Autoregressions via Changes in Volatility," Discussion Papers of DIW Berlin 1259, DIW Berlin, German Institute for Economic Research.
    7. Lanne, Markku & Lütkepohl, Helmut & Maciejowska, Katarzyna, 2010. "Structural vector autoregressions with Markov switching," Journal of Economic Dynamics and Control, Elsevier, vol. 34(2), pages 121-131, February.
    8. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    9. Netsunajev, Aleksei, 2013. "Reaction to technology shocks in Markov-switching structural VARs: Identification via heteroskedasticity," Journal of Macroeconomics, Elsevier, vol. 36(C), pages 51-62.
    10. Joan Paredes & Javier J. Pérez & Gabriel Perez Quiros, 2023. "Fiscal targets. A guide to forecasters?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 472-492, June.
    11. Helmut Lütkepohl, 2013. "Reducing confidence bands for simulated impulse responses," Statistical Papers, Springer, vol. 54(4), pages 1131-1145, November.
    12. Beqiraj, Elton & Patella, Valeria & Tancioni, Massimiliano, 2021. "Fiscal stance and the sovereign risk pass-through," Economic Modelling, Elsevier, vol. 102(C).
    13. Mehmet Balcilar & Rangan Gupta & Kevin Kotzé, 2017. "Forecasting South African macroeconomic variables with a Markov-switching small open-economy dynamic stochastic general equilibrium model," Empirical Economics, Springer, vol. 53(1), pages 117-135, August.
    14. Damen, Sven & Vastmans, Frank & Buyst, Erik, 2016. "The effect of mortgage interest deduction and mortgage characteristics on house prices," Journal of Housing Economics, Elsevier, vol. 34(C), pages 15-29.
    15. Proietti, Tommaso & Lütkepohl, Helmut, 2013. "Does the Box–Cox transformation help in forecasting macroeconomic time series?," International Journal of Forecasting, Elsevier, vol. 29(1), pages 88-99.
    16. Dmitry Kulikov & Aleksei Netsunajev, 2013. "Identifying monetary policy shocks via heteroskedasticity: a Bayesian approach," Bank of Estonia Working Papers wp2013-9, Bank of Estonia, revised 09 Dec 2013.
    17. Katarzyna Maciejowska, 2010. "Estimation Methods Comparison of SVAR Models with a Mixture of Two Normal Distributions," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 2(4), pages 279-314, September.
    18. Franses, Philip Hans & de Bruin, Paul, 2002. "On data transformations and evidence of nonlinearity," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 621-632, September.
    19. Dmitry Kulikov & Aleksei Netsunajev, 2016. "Identifying Shocks in Structural VAR models via heteroskedasticity: a Bayesian approach," Bank of Estonia Working Papers wp2015-8, Bank of Estonia, revised 19 Feb 2016.
    20. Lutz Kilian, 2013. "Structural vector autoregressions," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 22, pages 515-554, Edward Elgar Publishing.
    21. Krämer Walter, 2002. "Statistische Besonderheiten von Finanzzeitreihen / Statistical Properties of Financial Time Series," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 222(2), pages 210-229, April.

    More about this item

    Keywords

    autoregressive moving average process; forecast mean squared error; instantaneous transformation; integrated process; heteroskedasticity;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ces:ceswps:_2591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klaus Wohlrabe (email available below). General contact details of provider: https://edirc.repec.org/data/cesifde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.