IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v103y2019i1d10.1007_s10182-018-0324-9.html
   My bibliography  Save this article

A longitudinal model for shapes through triangulation

Author

Listed:
  • Meisam Moghimbeygi

    (Tarbiat Modares University)

  • Mousa Golalizadeh

    (Tarbiat Modares University)

Abstract

It is known that the shapes of planar triangles can be represented by a set of points on the surface of the unit sphere. On the other hand, most of the objects can easily be triangulated and so each triangle can accordingly be treated in the context of shape analysis. There is a growing interest to fit a smooth path going through the cloud of shape data available in some time instances. To tackle this problem, we propose a longitudinal model through a triangulation procedure for the shape data. In fact, our strategy initially relies on a spherical regression model for triangles, but is extended to shape data via triangulation. Regarding modeling of directional data, we use the bivariate von Mises–Fisher distribution for density of the errors. Various forms of the composite likelihood functions, constructed by altering the assumptions considered for the angles defined for each triangle, are invoked. The proposed regression model is applied to rat skull data. Also, some simulations results are presented along with the real data results.

Suggested Citation

  • Meisam Moghimbeygi & Mousa Golalizadeh, 2019. "A longitudinal model for shapes through triangulation," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(1), pages 99-121, March.
  • Handle: RePEc:spr:alstar:v:103:y:2019:i:1:d:10.1007_s10182-018-0324-9
    DOI: 10.1007/s10182-018-0324-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10182-018-0324-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10182-018-0324-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard E. Chandler & Steven Bate, 2007. "Inference for clustered data using the independence loglikelihood," Biometrika, Biometrika Trust, vol. 94(1), pages 167-183.
    2. Alfred Kume & Ian L. Dryden & Huiling Le, 2007. "Shape-space smoothing splines for planar landmark data," Biometrika, Biometrika Trust, vol. 94(3), pages 513-528.
    3. M. Moghimbeygi & M. Golalizadeh, 2017. "Longitudinal shape analysis by using the spherical coordinates," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(7), pages 1282-1295, May.
    4. Marco Di Marzio & Agnese Panzera & Charles C. Taylor, 2013. "Non-parametric Regression for Circular Responses," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(2), pages 238-255, June.
    5. K. V. Mardia & J. Kirkbride & F. L. Bookstein, 2004. "Statistics of Shape, Direction and Cylindrical Variables," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(4), pages 465-479.
    6. Cristiano Varin, 2008. "On composite marginal likelihoods," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(1), pages 1-28, February.
    7. Joe, Harry & Lee, Youngjo, 2009. "On weighting of bivariate margins in pairwise likelihood," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 670-685, April.
    8. Kanti V. Mardia & John T. Kent & Gareth Hughes & Charles C. Taylor, 2009. "Maximum likelihood estimation using composite likelihoods for closed exponential families," Biometrika, Biometrika Trust, vol. 96(4), pages 975-982.
    9. Peter E. Jupp & John T. Kent, 1987. "Fitting Smooth Paths to Spherical Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(1), pages 34-46, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhat, Chandra R., 2011. "The maximum approximate composite marginal likelihood (MACML) estimation of multinomial probit-based unordered response choice models," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 923-939, August.
    2. Paleti, Rajesh & Bhat, Chandra R., 2013. "The composite marginal likelihood (CML) estimation of panel ordered-response models," Journal of choice modelling, Elsevier, vol. 7(C), pages 24-43.
    3. Kwang‐Rae Kim & Ian L. Dryden & Huiling Le & Katie E. Severn, 2021. "Smoothing splines on Riemannian manifolds, with applications to 3D shape space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(1), pages 108-132, February.
    4. Costa, Rui J. & Wilkinson-Herbots, Hilde M., 2021. "Inference of gene flow in the process of speciation: Efficient maximum-likelihood implementation of a generalised isolation-with-migration model," Theoretical Population Biology, Elsevier, vol. 140(C), pages 1-15.
    5. L. L. Henn, 2022. "Limitations and performance of three approaches to Bayesian inference for Gaussian copula regression models of discrete data," Computational Statistics, Springer, vol. 37(2), pages 909-946, April.
    6. Cláudia Santos & Isabel Pereira & Manuel G. Scotto, 2021. "On the theory of periodic multivariate INAR processes," Statistical Papers, Springer, vol. 62(3), pages 1291-1348, June.
    7. Myrsini Katsikatsou & Irini Moustaki, 2016. "Pairwise Likelihood Ratio Tests and Model Selection Criteria for Structural Equation Models with Ordinal Variables," Psychometrika, Springer;The Psychometric Society, vol. 81(4), pages 1046-1068, December.
    8. Gourieroux, C. & Monfort, A., 2018. "Composite indirect inference with application to corporate risks," Econometrics and Statistics, Elsevier, vol. 7(C), pages 30-45.
    9. Nuo Xi & Michael W. Browne, 2014. "Contributions to the Underlying Bivariate Normal Method for Factor Analyzing Ordinal Data," Journal of Educational and Behavioral Statistics, , vol. 39(6), pages 583-611, December.
    10. Kenne Pagui, E.C. & Salvan, A. & Sartori, N., 2015. "On full efficiency of the maximum composite likelihood estimator," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 120-124.
    11. Büscher, Sebastian & Bauer, Dietmar, 2024. "Weighting strategies for pairwise composite marginal likelihood estimation in case of unbalanced panels and unaccounted autoregressive structure of the errors," Transportation Research Part B: Methodological, Elsevier, vol. 181(C).
    12. Ian L. Dryden & Kwang-Rae Kim & Huiling Le, 2019. "Bayesian Linear Size-and-Shape Regression with Applications to Face Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 83-103, February.
    13. Papageorgiou, Ioulia & Moustaki, Irini, 2019. "Sampling of pairs in pairwise likelihood estimation for latent variable models with categorical observed variables," LSE Research Online Documents on Economics 87592, London School of Economics and Political Science, LSE Library.
    14. Enam, Annesha & Konduri, Karthik C. & Pinjari, Abdul R. & Eluru, Naveen, 2018. "An integrated choice and latent variable model for multiple discrete continuous choice kernels: Application exploring the association between day level moods and discretionary activity engagement choi," Journal of choice modelling, Elsevier, vol. 26(C), pages 80-100.
    15. Paolo Vidoni, 2018. "A note on predictive densities based on composite likelihood methods," METRON, Springer;Sapienza Università di Roma, vol. 76(1), pages 31-48, April.
    16. Elsa Vazquez & Jeffrey R. Wilson, 2021. "Partitioned method of valid moment marginal model with Bayes interval estimates for correlated binary data with time-dependent covariates," Computational Statistics, Springer, vol. 36(4), pages 2701-2718, December.
    17. Cavit Pakel & Neil Shephard & Kevin Sheppard & Robert F. Engle, 2021. "Fitting Vast Dimensional Time-Varying Covariance Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 652-668, July.
    18. Cavit Pakel & Neil Shephard & Kevin Sheppard, 2009. "Nuisance parameters, composite likelihoods and a panel of GARCH models," OFRC Working Papers Series 2009fe03, Oxford Financial Research Centre.
    19. Moreno Bevilacqua & Alfredo Alegria & Daira Velandia & Emilio Porcu, 2016. "Composite Likelihood Inference for Multivariate Gaussian Random Fields," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 448-469, September.
    20. Singh, Abhilash C. & Faghih Imani, Ahmadreza & Sivakumar, Aruna & Luna Xi, Yang & Miller, Eric J., 2024. "A joint analysis of accessibility and household trip frequencies by travel mode," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:103:y:2019:i:1:d:10.1007_s10182-018-0324-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.