IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v94y2007i3p513-528.html
   My bibliography  Save this article

Shape-space smoothing splines for planar landmark data

Author

Listed:
  • Alfred Kume
  • Ian L. Dryden
  • Huiling Le

Abstract

A method is developed for fitting smooth curves through a series of shapes of landmarks in two dimensions using unrolling and unwrapping procedures in Riemannian manifolds. An explicit method of calculation is given which is analogous to that of Jupp & Kent (1987) for spherical data. The resulting splines are called shape-space smoothing splines. The method resembles that of fitting smoothing splines in real spaces in that, if the smoothing parameter is zero, the resulting curve interpolates the data points, and if it is infinitely large the curve is a geodesic line. The fitted path to the data is defined such that its unrolled version at the tangent space of the starting point is a cubic spline fitted to the unwrapped data with respect to that path. Computation of the fitted path consists of an iterative procedure which converges quickly, and the resulting path is given in a discretised form in terms of a piecewise geodesic path. The procedure is applied to the analysis of some human movement data, and a test for the appropriateness of a mean geodesic curve is given. Copyright 2007, Oxford University Press.

Suggested Citation

  • Alfred Kume & Ian L. Dryden & Huiling Le, 2007. "Shape-space smoothing splines for planar landmark data," Biometrika, Biometrika Trust, vol. 94(3), pages 513-528.
  • Handle: RePEc:oup:biomet:v:94:y:2007:i:3:p:513-528
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asm047
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kwang‐Rae Kim & Ian L. Dryden & Huiling Le & Katie E. Severn, 2021. "Smoothing splines on Riemannian manifolds, with applications to 3D shape space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(1), pages 108-132, February.
    2. Ian L. Dryden & Kwang-Rae Kim & Huiling Le, 2019. "Bayesian Linear Size-and-Shape Regression with Applications to Face Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 83-103, February.
    3. Victor M. Panaretos & Tung Pham & Zhigang Yao, 2014. "Principal Flows," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 424-436, March.
    4. M. Moghimbeygi & M. Golalizadeh, 2017. "Longitudinal shape analysis by using the spherical coordinates," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(7), pages 1282-1295, May.
    5. Stephan F. Huckemann, 2021. "Comments on: Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 71-75, March.
    6. Meisam Moghimbeygi & Mousa Golalizadeh, 2019. "A longitudinal model for shapes through triangulation," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(1), pages 99-121, March.
    7. Chiara Brombin & Luigi Salmaso & Lara Fontanella & Luigi Ippoliti, 2015. "Nonparametric combination-based tests in dynamic shape analysis," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(4), pages 460-484, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:94:y:2007:i:3:p:513-528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.