IDEAS home Printed from https://ideas.repec.org/a/spr/sankha/v81y2019i1d10.1007_s13171-018-0136-8.html
   My bibliography  Save this article

Bayesian Linear Size-and-Shape Regression with Applications to Face Data

Author

Listed:
  • Ian L. Dryden

    (University of Nottingham)

  • Kwang-Rae Kim

    (SAS Korea)

  • Huiling Le

    (University of Nottingham)

Abstract

Regression models for size-and-shape analysis are developed, where the model is specified in the Euclidean space of the landmark coordinates. Statistical models in this space (which is known as the top space or ambient space) are often easier for practitioners to understand than alternative models in the quotient space of size-and-shapes. We consider a Bayesian linear size-and-shape regression model in which the response variable is given by labelled configuration matrix, and the covariates represent quantities such as gender and age. It is important to parameterize the model so that it is identifiable, and we use the LQ decomposition in the intercept term in the model for this purpose. Gamma priors for the inverse variance of the error term, matrix Fisher priors for the random rotation matrix, and flat priors for the regression coefficients are used. Markov chain Monte Carlo algorithms are used for sampling from the posterior distribution, in particular by using combinations of Metropolis-Hastings updates and a Gibbs sampler. The proposed Bayesian methodology is illustrated with an application to forensic facial data in three dimensions, where we investigate the main changes in growth by describing relative movements of landmarks for each gender over time.

Suggested Citation

  • Ian L. Dryden & Kwang-Rae Kim & Huiling Le, 2019. "Bayesian Linear Size-and-Shape Regression with Applications to Face Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 83-103, February.
  • Handle: RePEc:spr:sankha:v:81:y:2019:i:1:d:10.1007_s13171-018-0136-8
    DOI: 10.1007/s13171-018-0136-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13171-018-0136-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13171-018-0136-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael Rosenthal & Wei Wu & Eric Klassen & Anuj Srivastava, 2014. "Spherical Regression Models Using Projective Linear Transformations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1615-1624, December.
    2. Alfred Kume & Ian L. Dryden & Huiling Le, 2007. "Shape-space smoothing splines for planar landmark data," Biometrika, Biometrika Trust, vol. 94(3), pages 513-528.
    3. Sungkyu Jung & Ian L. Dryden & J. S. Marron, 2012. "Analysis of principal nested spheres," Biometrika, Biometrika Trust, vol. 99(3), pages 551-568.
    4. Emil Cornea & Hongtu Zhu & Peter Kim & Joseph G. Ibrahim, 2017. "Regression models on Riemannian symmetric spaces," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 463-482, March.
    5. T. Hotz & S. Huckemann & A. Munk & D. Gaffrey & B. Sloboda, 2010. "Shape spaces for prealigned star‐shaped objects—studying the growth of plants by principal components analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(1), pages 127-143, January.
    6. Paolo Piras & Antonietta Evangelista & Stefano Gabriele & Paola Nardinocchi & Luciano Teresi & Concetta Torromeo & Michele Schiariti & Valerio Varano & Paolo Emilio Puddu, 2014. "4D-Analysis of Left Ventricular Heart Cycle Using Procrustes Motion Analysis," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-17, January.
    7. Peter J. Green & Kanti V. Mardia, 2006. "Bayesian alignment using hierarchical models, with applications in protein bioinformatics," Biometrika, Biometrika Trust, vol. 93(2), pages 235-254, June.
    8. Yuhong Yang, 2005. "Can the strengths of AIC and BIC be shared? A conflict between model indentification and regression estimation," Biometrika, Biometrika Trust, vol. 92(4), pages 937-950, December.
    9. Kim Kenobi & Ian L. Dryden & Huiling Le, 2010. "Shape curves and geodesic modelling," Biometrika, Biometrika Trust, vol. 97(3), pages 567-584.
    10. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    11. Zhu, Hongtu & Chen, Yasheng & Ibrahim, Joseph G. & Li, Yimei & Hall, Colin & Lin, Weili, 2009. "Intrinsic Regression Models for Positive-Definite Matrices With Applications to Diffusion Tensor Imaging," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1203-1212.
    12. Peter E. Jupp & John T. Kent, 1987. "Fitting Smooth Paths to Spherical Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(1), pages 34-46, March.
    13. Ying Yuan & Hongtu Zhu & Weili Lin & J. S. Marron, 2012. "Local polynomial regression for symmetric positive definite matrices," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(4), pages 697-719, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Di Noia, Antonio & Mastrantonio, Gianluca & Jona Lasinio, Giovanna, 2024. "Bayesian size-and-shape regression modelling," Statistics & Probability Letters, Elsevier, vol. 204(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kwang‐Rae Kim & Ian L. Dryden & Huiling Le & Katie E. Severn, 2021. "Smoothing splines on Riemannian manifolds, with applications to 3D shape space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(1), pages 108-132, February.
    2. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    3. Emil Cornea & Hongtu Zhu & Peter Kim & Joseph G. Ibrahim, 2017. "Regression models on Riemannian symmetric spaces," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 463-482, March.
    4. Xiongtao Dai & Zhenhua Lin & Hans‐Georg Müller, 2021. "Modeling sparse longitudinal data on Riemannian manifolds," Biometrics, The International Biometric Society, vol. 77(4), pages 1328-1341, December.
    5. Di Noia, Antonio & Mastrantonio, Gianluca & Jona Lasinio, Giovanna, 2024. "Bayesian size-and-shape regression modelling," Statistics & Probability Letters, Elsevier, vol. 204(C).
    6. Meisam Moghimbeygi & Mousa Golalizadeh, 2019. "A longitudinal model for shapes through triangulation," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(1), pages 99-121, March.
    7. Stephan F. Huckemann, 2021. "Comments on: Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 71-75, March.
    8. Overholser, Rosanna & Xu, Ronghui, 2014. "Effective degrees of freedom and its application to conditional AIC for linear mixed-effects models with correlated error structures," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 160-170.
    9. Krebs, Johannes & Rademacher, Daniel & von Sachs, Rainer, 2022. "Statistical inference for intrinsic wavelet estimators of SPD covariance matrices in a log-Euclidean manifold," LIDAM Discussion Papers ISBA 2022004, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Bailly, Gabriel & von Sachs, Rainer, 2024. "Time-Varying Covariance Matrices Estimation by Nonlinear Wavelet Thresholding in a Log-Euclidean Riemannian Manifold," LIDAM Discussion Papers ISBA 2024004, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Samir, Chafik & Adouani, Ines, 2019. "C1 interpolating Bézier path on Riemannian manifolds, with applications to 3D shape space," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 371-384.
    12. Zhou Lan & Brian J. Reich & Joseph Guinness & Dipankar Bandyopadhyay & Liangsuo Ma & F. Gerard Moeller, 2022. "Geostatistical modeling of positive‐definite matrices: An application to diffusion tensor imaging," Biometrics, The International Biometric Society, vol. 78(2), pages 548-559, June.
    13. Jie Ding & Vahid Tarokh & Yuhong Yang, 2018. "Model Selection Techniques -- An Overview," Papers 1810.09583, arXiv.org.
    14. Mathias Drton & Martyn Plummer, 2017. "A Bayesian information criterion for singular models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 323-380, March.
    15. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    16. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    17. Jesse Elliott & Zemin Bai & Shu-Ching Hsieh & Shannon E Kelly & Li Chen & Becky Skidmore & Said Yousef & Carine Zheng & David J Stewart & George A Wells, 2020. "ALK inhibitors for non-small cell lung cancer: A systematic review and network meta-analysis," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.
    18. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    19. Francois Olivier & Laval Guillaume, 2011. "Deviance Information Criteria for Model Selection in Approximate Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-25, July.
    20. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankha:v:81:y:2019:i:1:d:10.1007_s13171-018-0136-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.