IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v140y2021icp1-15.html
   My bibliography  Save this article

Inference of gene flow in the process of speciation: Efficient maximum-likelihood implementation of a generalised isolation-with-migration model

Author

Listed:
  • Costa, Rui J.
  • Wilkinson-Herbots, Hilde M.

Abstract

The ‘isolation with migration’ (IM) model has been extensively used in the literature to detect gene flow during the process of speciation. In this model, an ancestral population split into two or more descendant populations which subsequently exchanged migrants at a constant rate until the present. Of course, the assumption of constant gene flow until the present is often over-simplistic in the context of speciation. In this paper, we consider a ‘generalised IM’ (GIM) model: a two-population IM model in which migration rates and population sizes are allowed to change at some point in the past. By developing a maximum-likelihood implementation of this model, we enable inference on both historical and contemporary rates of gene flow between two closely related populations or species. The GIM model encompasses both the standard two-population IM model and the ‘isolation with initial migration’ (IIM) model as special cases, as well as a model of secondary contact. We examine for simulated data how our method can be used, by means of likelihood ratio tests or AIC scores, to distinguish between the following scenarios of population divergence: (a) divergence in complete isolation; (b) divergence with a period of gene flow followed by isolation; (c) divergence with a period of isolation followed by secondary contact; (d) divergence with ongoing gene flow. Our method is based on the coalescent and is suitable for data sets consisting of the number of nucleotide differences between one pair of DNA sequences at each of a large number of independent loci. As our method relies on an explicit expression for the likelihood, it is computationally very fast.

Suggested Citation

  • Costa, Rui J. & Wilkinson-Herbots, Hilde M., 2021. "Inference of gene flow in the process of speciation: Efficient maximum-likelihood implementation of a generalised isolation-with-migration model," Theoretical Population Biology, Elsevier, vol. 140(C), pages 1-15.
  • Handle: RePEc:eee:thpobi:v:140:y:2021:i:c:p:1-15
    DOI: 10.1016/j.tpb.2021.03.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580921000186
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2021.03.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard E. Chandler & Steven Bate, 2007. "Inference for clustered data using the independence loglikelihood," Biometrika, Biometrika Trust, vol. 94(1), pages 167-183.
    2. Wilkinson-Herbots, Hilde M., 2012. "The distribution of the coalescence time and the number of pairwise nucleotide differences in a model of population divergence or speciation with an initial period of gene flow," Theoretical Population Biology, Elsevier, vol. 82(2), pages 92-108.
    3. Thomas Mailund & Anders E Halager & Michael Westergaard & Julien Y Dutheil & Kasper Munch & Lars N Andersen & Gerton Lunter & Kay Prüfer & Aylwyn Scally & Asger Hobolth & Mikkel H Schierup, 2012. "A New Isolation with Migration Model along Complete Genomes Infers Very Different Divergence Processes among Closely Related Great Ape Species," PLOS Genetics, Public Library of Science, vol. 8(12), pages 1-19, December.
    4. Jody Hey, 2005. "On the Number of New World Founders: A Population Genetic Portrait of the Peopling of the Americas," PLOS Biology, Public Library of Science, vol. 3(6), pages 1-1, May.
    5. Kumagai, Seiji & Uyenoyama, Marcy K., 2015. "Genealogical histories in structured populations," Theoretical Population Biology, Elsevier, vol. 102(C), pages 3-15.
    6. Wilkinson-Herbots, Hilde M., 2008. "The distribution of the coalescence time and the number of pairwise nucleotide differences in the “isolation with migration†model," Theoretical Population Biology, Elsevier, vol. 73(2), pages 277-288.
    7. Cristiano Varin, 2008. "On composite marginal likelihoods," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(1), pages 1-28, February.
    8. Chen, Hua, 2012. "The joint allele frequency spectrum of multiple populations: A coalescent theory approach," Theoretical Population Biology, Elsevier, vol. 81(2), pages 179-195.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hobolth, Asger & Rivas-González, Iker & Bladt, Mogens & Futschik, Andreas, 2024. "Phase-type distributions in mathematical population genetics: An emerging framework," Theoretical Population Biology, Elsevier, vol. 157(C), pages 14-32.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wilkinson-Herbots, Hilde M., 2012. "The distribution of the coalescence time and the number of pairwise nucleotide differences in a model of population divergence or speciation with an initial period of gene flow," Theoretical Population Biology, Elsevier, vol. 82(2), pages 92-108.
    2. L. L. Henn, 2022. "Limitations and performance of three approaches to Bayesian inference for Gaussian copula regression models of discrete data," Computational Statistics, Springer, vol. 37(2), pages 909-946, April.
    3. Gourieroux, C. & Monfort, A., 2018. "Composite indirect inference with application to corporate risks," Econometrics and Statistics, Elsevier, vol. 7(C), pages 30-45.
    4. Nuo Xi & Michael W. Browne, 2014. "Contributions to the Underlying Bivariate Normal Method for Factor Analyzing Ordinal Data," Journal of Educational and Behavioral Statistics, , vol. 39(6), pages 583-611, December.
    5. Meisam Moghimbeygi & Mousa Golalizadeh, 2019. "A longitudinal model for shapes through triangulation," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(1), pages 99-121, March.
    6. Elsa Vazquez & Jeffrey R. Wilson, 2021. "Partitioned method of valid moment marginal model with Bayes interval estimates for correlated binary data with time-dependent covariates," Computational Statistics, Springer, vol. 36(4), pages 2701-2718, December.
    7. Cavit Pakel & Neil Shephard & Kevin Sheppard & Robert F. Engle, 2021. "Fitting Vast Dimensional Time-Varying Covariance Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 652-668, July.
    8. Cavit Pakel & Neil Shephard & Kevin Sheppard, 2009. "Nuisance parameters, composite likelihoods and a panel of GARCH models," OFRC Working Papers Series 2009fe03, Oxford Financial Research Centre.
    9. Singh, Abhilash C. & Faghih Imani, Ahmadreza & Sivakumar, Aruna & Luna Xi, Yang & Miller, Eric J., 2024. "A joint analysis of accessibility and household trip frequencies by travel mode," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    10. Lee Fawcett & David Walshaw, 2014. "Estimating the probability of simultaneous rainfall extremes within a region: a spatial approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(5), pages 959-976, May.
    11. Hung‐pin Lai & Subal C. Kumbhakar, 2020. "Estimation of a dynamic stochastic frontier model using likelihood‐based approaches," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(2), pages 217-247, March.
    12. Nikoloulopoulos, Aristidis K., 2023. "Efficient and feasible inference for high-dimensional normal copula regression models," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    13. Larribe Fabrice & Lessard Sabin, 2008. "A Composite-Conditional-Likelihood Approach for Gene Mapping Based on Linkage Disequilibrium in Windows of Marker Loci," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-33, August.
    14. Huang Huang & Sameh Abdulah & Ying Sun & Hatem Ltaief & David E. Keyes & Marc G. Genton, 2021. "Competition on Spatial Statistics for Large Datasets," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(4), pages 580-595, December.
    15. Battauz, Michela & Vidoni, Paolo, 2022. "A likelihood-based boosting algorithm for factor analysis models with binary data," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    16. Lemonte, Artur J., 2013. "On the gradient statistic under model misspecification," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 390-398.
    17. Duha Hamed & Ahmad Alzaghal, 2021. "New class of Lindley distributions: properties and applications," Journal of Statistical Distributions and Applications, Springer, vol. 8(1), pages 1-22, December.
    18. F. Giummolè & V. Mameli & E. Ruli & L. Ventura, 2019. "Objective Bayesian inference with proper scoring rules," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 728-755, September.
    19. Ana-Maria Staicu, 2017. "Interview with Nancy Reid," International Statistical Review, International Statistical Institute, vol. 85(3), pages 381-403, December.
    20. Tata Subba Rao & Granville Tunnicliffe Wilson & Joao Jesus & Richard E. Chandler, 2017. "Inference with the Whittle Likelihood: A Tractable Approach Using Estimating Functions," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 204-224, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:140:y:2021:i:c:p:1-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.