IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v36y2021i4d10.1007_s00180-021-01105-3.html
   My bibliography  Save this article

Partitioned method of valid moment marginal model with Bayes interval estimates for correlated binary data with time-dependent covariates

Author

Listed:
  • Elsa Vazquez

    (Arizona State University)

  • Jeffrey R. Wilson

    (Arizona State University)

Abstract

The fit of marginal models to longitudinal data should include modelling all extra variation among responses and covariates. This paper proposes a Partitioned Method of Valid Moments marginal regression model for binary outcomes with Bayes method while using lagged coefficients. Time-dependent covariates are factored in through composite likelihoods. A simulation study highlights the properties of the model coefficients. Modeling cognitive impairment diagnosis in NACC Alzheimer clinical data are demonstrated. Sensitivity analyses are conducted to evaluate the impact of the prior distribution on the posterior inferences.

Suggested Citation

  • Elsa Vazquez & Jeffrey R. Wilson, 2021. "Partitioned method of valid moment marginal model with Bayes interval estimates for correlated binary data with time-dependent covariates," Computational Statistics, Springer, vol. 36(4), pages 2701-2718, December.
  • Handle: RePEc:spr:compst:v:36:y:2021:i:4:d:10.1007_s00180-021-01105-3
    DOI: 10.1007/s00180-021-01105-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-021-01105-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-021-01105-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard E. Chandler & Steven Bate, 2007. "Inference for clustered data using the independence loglikelihood," Biometrika, Biometrika Trust, vol. 94(1), pages 167-183.
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. McFadden, Daniel, 1989. "A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration," Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
    4. Michael L. Stein & Zhiyi Chi & Leah J. Welty, 2004. "Approximating likelihoods for large spatial data sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(2), pages 275-296, May.
    5. Cristiano Varin, 2008. "On composite marginal likelihoods," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(1), pages 1-28, February.
    6. C. A. Glasbey, 2001. "Non‐linear autoregressive time series with multivariate Gaussian mixtures as marginal distributions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(2), pages 143-154.
    7. Bradley Efron, 2015. "Frequentist accuracy of Bayesian estimates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(3), pages 617-646, June.
    8. Viola Obermeier & Fabian Scheipl & Christian Heumann & Joachim Wassermann & Helmut Küchenhoff, 2015. "Flexible distributed lags for modelling earthquake data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 64(2), pages 395-412, February.
    9. D. R. Cox, 2004. "A note on pseudolikelihood constructed from marginal densities," Biometrika, Biometrika Trust, vol. 91(3), pages 729-737, September.
    10. Patrick J. Heagerty & Bryan A. Comstock, 2013. "Exploration of Lagged Associations using Longitudinal Data," Biometrics, The International Biometric Society, vol. 69(1), pages 197-205, March.
    11. Tze Leung Lai & Dylan Small, 2007. "Marginal regression analysis of longitudinal data with time‐dependent covariates: a generalized method‐of‐moments approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(1), pages 79-99, February.
    12. Patrick J. Heagerty, 2002. "Marginalized Transition Models and Likelihood Inference for Longitudinal Categorical Data," Biometrics, The International Biometric Society, vol. 58(2), pages 342-351, June.
    13. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-280, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cristiano Varin, 2008. "On composite marginal likelihoods," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(1), pages 1-28, February.
    2. Gourieroux, C. & Monfort, A., 2018. "Composite indirect inference with application to corporate risks," Econometrics and Statistics, Elsevier, vol. 7(C), pages 30-45.
    3. Ramdan Dridi, 2000. "Simulated Asymptotic Least Squares Theory," STICERD - Econometrics Paper Series 396, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    4. repec:bla:ecorec:v:91:y:2015:i::p:1-24 is not listed on IDEAS
    5. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    6. Joe, Harry & Lee, Youngjo, 2009. "On weighting of bivariate margins in pairwise likelihood," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 670-685, April.
    7. Ioulia Papageorgiou, 2016. "Sampling from Correlated Populations: Optimal Strategies and Comparison Study," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 78(1), pages 119-151, May.
    8. Dridi, Ramdan, 2000. "Simulated asymptotic least squares theory," LSE Research Online Documents on Economics 6861, London School of Economics and Political Science, LSE Library.
    9. Nuo Xi & Michael W. Browne, 2014. "Contributions to the Underlying Bivariate Normal Method for Factor Analyzing Ordinal Data," Journal of Educational and Behavioral Statistics, , vol. 39(6), pages 583-611, December.
    10. Kerem Tuzcuoglu, 2019. "Composite Likelihood Estimation of an Autoregressive Panel Probit Model with Random Effects," Staff Working Papers 19-16, Bank of Canada.
    11. Bansal, Ravi & Kiku, Dana & Yaron, Amir, 2016. "Risks for the long run: Estimation with time aggregation," Journal of Monetary Economics, Elsevier, vol. 82(C), pages 52-69.
    12. Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015. "High dimensional generalized empirical likelihood for moment restrictions with dependent data," Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
    13. Isaiah Andrews & Anna Mikusheva, 2016. "Conditional Inference With a Functional Nuisance Parameter," Econometrica, Econometric Society, vol. 84, pages 1571-1612, July.
    14. Hansen, Lars Peter & Heaton, John & Luttmer, Erzo G J, 1995. "Econometric Evaluation of Asset Pricing Models," The Review of Financial Studies, Society for Financial Studies, vol. 8(2), pages 237-274.
    15. Dante Amengual & Marine Carrasco & Enrique Sentana, 2017. "Testing Distributional Assumptions Using a Continuum of Moments," Working Papers wp2018_1709, CEMFI.
    16. Lapo Filistrucchi & Tobias J. Klein, 2013. "Price Competition in Two-Sided Markets with Heterogeneous Consumers and Network Effects," Working Papers 13-20, NET Institute.
    17. Susan Athey & Scott Stern, 1998. "An Empirical Framework for Testing Theories About Complimentarity in Organizational Design," NBER Working Papers 6600, National Bureau of Economic Research, Inc.
    18. Whitney K. Newey & Frank Windmeijer, 2005. "GMM with many weak moment conditions," CeMMAP working papers CWP18/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    19. Jens J. Krüger, 2014. "A multivariate evaluation of German output growth and inflation forecasts," Economics Bulletin, AccessEcon, vol. 34(3), pages 1410-1418.
    20. Joachim Inkmann, 2000. "Finite Sample Properties of One-Step, Two-Step and Bootstrap Empirical Likelihood Approaches to Efficient GMM Estimation," Econometric Society World Congress 2000 Contributed Papers 0332, Econometric Society.
    21. Otsu, Taisuke, 2010. "On Bahadur efficiency of empirical likelihood," Journal of Econometrics, Elsevier, vol. 157(2), pages 248-256, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:36:y:2021:i:4:d:10.1007_s00180-021-01105-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.