IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v30y2018i3p742-757.html
   My bibliography  Save this article

Analytic computation of nonparametric Marsan–Lengliné estimates for Hawkes point processes

Author

Listed:
  • Frederic Paik Schoenberg
  • Joshua Seth Gordon
  • Ryan J. Harrigan

Abstract

In 2008, Marsan and Lengliné presented a nonparametric way to estimate the triggering function of a Hawkes process. Their method requires an iterative and computationally intensive procedure which ultimately produces only approximate maximum likelihood estimates (MLEs) whose asymptotic properties are poorly understood. Here, we note a mathematical curiosity that allows one to compute, directly and extremely rapidly, exact MLEs of the nonparametric triggering function. The method here requires that the number q of intervals on which the nonparametric estimate is sought equals the number n of observed points. The resulting estimates have very high variance but may be smoothed to form more stable estimates. The performance and computational efficiency of the proposed method is verified in two disparate, highly challenging simulation scenarios: first to estimate the triggering functions, with simulation-based 95% confidence bands, for earthquakes and their aftershocks in Loma Prieta, California, and second, to characterise triggering in confirmed cases of plague in the United States over the last century. In both cases, the proposed estimator can be used to describe the rate of contagion of the processes in detail, and the computational efficiency of the estimator facilitates the construction of simulation-based confidence intervals.

Suggested Citation

  • Frederic Paik Schoenberg & Joshua Seth Gordon & Ryan J. Harrigan, 2018. "Analytic computation of nonparametric Marsan–Lengliné estimates for Hawkes point processes," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 30(3), pages 742-757, July.
  • Handle: RePEc:taf:gnstxx:v:30:y:2018:i:3:p:742-757
    DOI: 10.1080/10485252.2018.1475663
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2018.1475663
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2018.1475663?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baichuan Yuan & Frederic P. Schoenberg & Andrea L. Bertozzi, 2021. "Fast estimation of multivariate spatiotemporal Hawkes processes and network reconstruction," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(6), pages 1127-1152, December.
    2. Frederic Paik Schoenberg, 2022. "Nonparametric estimation of variable productivity Hawkes processes," Environmetrics, John Wiley & Sons, Ltd., vol. 33(6), September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:30:y:2018:i:3:p:742-757. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.