IDEAS home Printed from https://ideas.repec.org/a/spr/metron/v79y2021i3d10.1007_s40300-021-00210-z.html
   My bibliography  Save this article

Boundary estimation with the fuzzy set density estimator

Author

Listed:
  • Jesús Fajardo

    (Universidad de Oriente, Núcleo de Sucre)

  • Pedro Harmath

    (Universidad Austral)

Abstract

In order to extend the properties of the fuzzy set density estimation method and provide new results related to the nonparametric density estimation problems not based on kernels, this paper analyzes the possible boundary effects, if any, of the fuzzy set density estimator and presents a criterion to remove it. Moreover, we propose a boundary fuzzy set estimator which is defined as a particular class of fuzzy set density estimators, where the bias, variance, mean squared error and function that minimizes the mean squared error of the proposed estimator are given. Finally, these theoretical findings are illustrated through some numerical examples, and with two real data examples. Simulations show that the proposed estimator has better performance at points near 0 in a $$b_{_n}$$ b n spread neighborhood, when it is compared with the particular boundary kernel estimator of a generalized reflection method for the four shapes of densities considered.

Suggested Citation

  • Jesús Fajardo & Pedro Harmath, 2021. "Boundary estimation with the fuzzy set density estimator," METRON, Springer;Sapienza Università di Roma, vol. 79(3), pages 285-302, December.
  • Handle: RePEc:spr:metron:v:79:y:2021:i:3:d:10.1007_s40300-021-00210-z
    DOI: 10.1007/s40300-021-00210-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40300-021-00210-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40300-021-00210-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gery Geenens & Arthur Charpentier & Davy Paindaveine, 2014. "Probit Transformation for Nonparametric Kernel Estimation of the Copula Density," Working Papers ECARES ECARES 2014-23, ULB -- Universite Libre de Bruxelles.
    2. M.C. Jones & D.A. Henderson, 2007. "Miscellanea Kernel-Type Density Estimation on the Unit Interval," Biometrika, Biometrika Trust, vol. 94(4), pages 977-984.
    3. Dai, J. & Sperlich, S., 2010. "Simple and effective boundary correction for kernel densities and regression with an application to the world income and Engel curve estimation," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2487-2497, November.
    4. Matthew J. Colbrook & Zdravko I. Botev & Karsten Kuritz & Shev MacNamara, 2020. "Kernel Density Estimation with Linked Boundary Conditions," Research Paper Series 414, Quantitative Finance Research Centre, University of Technology, Sydney.
    5. Gery Geenens, 2014. "Probit Transformation for Kernel Density Estimation on the Unit Interval," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 346-358, March.
    6. Shunpu Zhang & Rohana Karunamuni, 2000. "Boundary Bias Correction for Nonparametric Deconvolution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(4), pages 612-629, December.
    7. Malec, Peter & Schienle, Melanie, 2014. "Nonparametric kernel density estimation near the boundary," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 57-76.
    8. Jesús A. Fajardo, 2012. "A Criterion for the Fuzzy Set Estimation of the Regression Function," Journal of Probability and Statistics, Hindawi, vol. 2012, pages 1-18, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodrigues, G.S. & Nott, David J. & Sisson, S.A., 2016. "Functional regression approximate Bayesian computation for Gaussian process density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 229-241.
    2. Gery Geenens, 2021. "Mellin–Meijer kernel density estimation on $${{\mathbb {R}}}^+$$ R +," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(5), pages 953-977, October.
    3. Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    4. Gery Geenens, 2014. "Probit Transformation for Kernel Density Estimation on the Unit Interval," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 346-358, March.
    5. D.P. Amali Dassanayake & Igor Volobouev & A. Alexandre Trindade, 2017. "Local orthogonal polynomial expansion for density estimation," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(4), pages 806-830, October.
    6. Tepegjozova Marija & Zhou Jing & Claeskens Gerda & Czado Claudia, 2022. "Nonparametric C- and D-vine-based quantile regression," Dependence Modeling, De Gruyter, vol. 10(1), pages 1-21, January.
    7. Gery Geenens & Richard Dunn, 2017. "A nonparametric copula approach to conditional Value-at-Risk," Papers 1712.05527, arXiv.org, revised Oct 2019.
    8. Hirukawa, Masayuki, 2010. "Nonparametric multiplicative bias correction for kernel-type density estimation on the unit interval," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 473-495, February.
    9. Touazi, A. & Benouaret, Z. & Aissani, D. & Adjabi, S., 2017. "Nonparametric estimation of the claim amount in the strong stability analysis of the classical risk model," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 78-83.
    10. Nikolay Gospodinov & Masayuki Hirukawa, 2008. "Time Series Nonparametric Regression Using Asymmetric Kernels with an Application to Estimation of Scalar Diffusion Processes," CIRJE F-Series CIRJE-F-573, CIRJE, Faculty of Economics, University of Tokyo.
    11. Berry, Tyrus & Sauer, Timothy, 2017. "Density estimation on manifolds with boundary," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 1-17.
    12. Song Li & Mervyn J. Silvapulle & Param Silvapulle & Xibin Zhang, 2015. "Bayesian Approaches to Nonparametric Estimation of Densities on the Unit Interval," Econometric Reviews, Taylor & Francis Journals, vol. 34(3), pages 394-412, March.
    13. Bernoth, Kerstin & Erdogan, Burcu, 2012. "Sovereign bond yield spreads: A time-varying coefficient approach," Journal of International Money and Finance, Elsevier, vol. 31(3), pages 639-656.
    14. Nagler, Thomas & Czado, Claudia, 2016. "Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 69-89.
    15. Igarashi, Gaku & Kakizawa, Yoshihide, 2014. "Re-formulation of inverse Gaussian, reciprocal inverse Gaussian, and Birnbaum–Saunders kernel estimators," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 235-246.
    16. Jun Cai & William C. Horrace & Christopher F. Parmeter, 2021. "Density deconvolution with Laplace errors and unknown variance," Journal of Productivity Analysis, Springer, vol. 56(2), pages 103-113, December.
    17. Marius Lux & Wolfgang Karl Härdle & Stefan Lessmann, 2020. "Data driven value-at-risk forecasting using a SVR-GARCH-KDE hybrid," Computational Statistics, Springer, vol. 35(3), pages 947-981, September.
    18. Nagler Thomas & Schellhase Christian & Czado Claudia, 2017. "Nonparametric estimation of simplified vine copula models: comparison of methods," Dependence Modeling, De Gruyter, vol. 5(1), pages 99-120, January.
    19. Malec, Peter & Schienle, Melanie, 2014. "Nonparametric kernel density estimation near the boundary," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 57-76.
    20. Daniela Castro Camilo & Miguel de Carvalho & Jennifer Wadsworth, 2017. "Time-Varying Extreme Value Dependence with Application to Leading European Stock Markets," Papers 1709.01198, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metron:v:79:y:2021:i:3:d:10.1007_s40300-021-00210-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.