IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v140y2015icp31-46.html
   My bibliography  Save this article

Density deconvolution from repeated measurements without symmetry assumption on the errors

Author

Listed:
  • Comte, Fabienne
  • Kappus, Johanna

Abstract

We consider deconvolution from repeated observations with unknown error distribution. Until now, this model has mostly been studied under the additional assumption that the errors are symmetric.

Suggested Citation

  • Comte, Fabienne & Kappus, Johanna, 2015. "Density deconvolution from repeated measurements without symmetry assumption on the errors," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 31-46.
  • Handle: RePEc:eee:jmvana:v:140:y:2015:i:c:p:31-46
    DOI: 10.1016/j.jmva.2015.04.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X15000925
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2015.04.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stéphane Bonhomme & Jean-Marc Robin, 2010. "Generalized Non-Parametric Deconvolution with an Application to Earnings Dynamics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 77(2), pages 491-533.
    2. Li, Tong & Vuong, Quang, 1998. "Nonparametric Estimation of the Measurement Error Model Using Multiple Indicators," Journal of Multivariate Analysis, Elsevier, vol. 65(2), pages 139-165, May.
    3. Fabienne Comte & Adeline Samson & Julien J Stirnemann, 2014. "Deconvolution Estimation of Onset of Pregnancy with Replicate Observations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 325-345, June.
    4. Emese Lazar & Carol Alexander, 2006. "Normal mixture GARCH(1,1): applications to exchange rate modelling," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 307-336.
    5. Ibragimov, Rustam & Sharakhmetov, Shaturgun, 2002. "The exact constant in the Rosenthal inequality for random variables with mean zero," Scholarly Articles 2623703, Harvard University Department of Economics.
    6. Stefanski, Leonard A., 1990. "Rates of convergence of some estimators in a class of deconvolution problems," Statistics & Probability Letters, Elsevier, vol. 9(3), pages 229-235, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adusumilli, Karun & Kurisu, Daisuke & Otsu, Taisuke & Whang, Yoon-Jae, 2020. "Inference on distribution functions under measurement error," Journal of Econometrics, Elsevier, vol. 215(1), pages 131-164.
    2. Dong, Hao & Otsu, Taisuke & Taylor, Luke, 2021. "Average Derivative Estimation Under Measurement Error," Econometric Theory, Cambridge University Press, vol. 37(5), pages 1004-1033, October.
    3. Kato, Kengo & Sasaki, Yuya, 2019. "Uniform confidence bands for nonparametric errors-in-variables regression," Journal of Econometrics, Elsevier, vol. 213(2), pages 516-555.
    4. Hao Dong & Taisuke Otsu, 2018. "Nonparametric Estimation of Additive Model with Errors-in-Variables," STICERD - Econometrics Paper Series 600, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    5. Hao Dong & Yuya Sasaki, 2022. "Estimation of average derivatives of latent regressors: with an application to inference on buffer-stock saving," Departmental Working Papers 2204, Southern Methodist University, Department of Economics.
    6. Karun Adusumilli & Taisuke Otsu, 2015. "Nonparametric instrumental regression with errors in variables," STICERD - Econometrics Paper Series /2015/585, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    7. Dong, Hao & Otsu, Taisuke & Taylor, Luke, 2022. "Estimation of varying coefficient models with measurement error," Journal of Econometrics, Elsevier, vol. 230(2), pages 388-415.
    8. Daisuke Kurisu & Taisuke Otsu, 2021. "On linearization of nonparametric deconvolution estimators for repeated measurements model," STICERD - Econometrics Paper Series 615, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    9. Daisuke Kurisu & Taisuke Otsu, 2019. "On the uniform convergence of deconvolution estimators from repeated measurements," STICERD - Econometrics Paper Series 604, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    10. Kurisu, Daisuke & Otsu, Taisuke, 2022. "On linearization of nonparametric deconvolution estimators for repeated measurements model," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    11. Kurisu, Daisuke & Otsu, Taisuke, 2022. "On the uniform convergence of deconvolution estimators from repeated measurements," LSE Research Online Documents on Economics 107533, London School of Economics and Political Science, LSE Library.
    12. Adusumilli, Karun & Kurisu, Daisies & Otsu, Taisuke & Whang, Yoon-Jae, 2020. "Inference on distribution functions under measurement error," LSE Research Online Documents on Economics 102692, London School of Economics and Political Science, LSE Library.
    13. Kurisu, Daisuke & Otsu, Taisuke, 2022. "On linearization of nonparametric deconvolution estimators for repeated measurements model," LSE Research Online Documents on Economics 112676, London School of Economics and Political Science, LSE Library.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johanna Kappus & Gwennaelle Mabon, 2013. "Adaptive Density Estimation in Deconvolution Problems with Unknown Error Distribution," Working Papers 2013-31, Center for Research in Economics and Statistics.
    2. Manuel Arellano & Stéphane Bonhomme, 2012. "Identifying Distributional Characteristics in Random Coefficients Panel Data Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 987-1020.
    3. Kato, Kengo & Sasaki, Yuya, 2018. "Uniform confidence bands in deconvolution with unknown error distribution," Journal of Econometrics, Elsevier, vol. 207(1), pages 129-161.
    4. Aurore Delaigle & Peter Hall, 2016. "Methodology for non-parametric deconvolution when the error distribution is unknown," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 231-252, January.
    5. Evdokimov, Kirill & White, Halbert, 2012. "Some Extensions Of A Lemma Of Kotlarski," Econometric Theory, Cambridge University Press, vol. 28(4), pages 925-932, August.
    6. Daisuke Kurisu & Taisuke Otsu, 2021. "On linearization of nonparametric deconvolution estimators for repeated measurements model," STICERD - Econometrics Paper Series 615, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    7. Valentina Corradi & Norman Swanson & Walter Distaso, 2006. "Predictive Inference for Integrated Volatility," Departmental Working Papers 200616, Rutgers University, Department of Economics.
    8. Hao Dong & Yuya Sasaki, 2022. "Estimation of average derivatives of latent regressors: with an application to inference on buffer-stock saving," Departmental Working Papers 2204, Southern Methodist University, Department of Economics.
    9. Kurisu, Daisuke & Otsu, Taisuke, 2022. "On the uniform convergence of deconvolution estimators from repeated measurements," LSE Research Online Documents on Economics 107533, London School of Economics and Political Science, LSE Library.
    10. Dong, Hao & Otsu, Taisuke & Taylor, Luke, 2022. "Estimation of varying coefficient models with measurement error," Journal of Econometrics, Elsevier, vol. 230(2), pages 388-415.
    11. Xiaohong Chen & Han Hong & Denis Nekipelov, 2011. "Nonlinear Models of Measurement Errors," Journal of Economic Literature, American Economic Association, vol. 49(4), pages 901-937, December.
    12. Manuel Arellano & Stéphane Bonhomme, 2016. "Nonlinear panel data estimation via quantile regressions," Econometrics Journal, Royal Economic Society, vol. 19(3), pages 61-94, October.
    13. JoonHwan Cho & Yao Luo & Ruli Xiao, 2022. "Deconvolution from Two Order Statistics," Working Papers tecipa-739, University of Toronto, Department of Economics.
    14. Kurisu, Daisuke & Otsu, Taisuke, 2022. "On linearization of nonparametric deconvolution estimators for repeated measurements model," LSE Research Online Documents on Economics 112676, London School of Economics and Political Science, LSE Library.
    15. Adusumilli, Karun & Kurisu, Daisuke & Otsu, Taisuke & Whang, Yoon-Jae, 2020. "Inference on distribution functions under measurement error," Journal of Econometrics, Elsevier, vol. 215(1), pages 131-164.
    16. Marie-Hélène Felt, 2018. "A Look Inside the Box: Combining Aggregate and Marginal Distributions to Identify Joint Distributions," Staff Working Papers 18-29, Bank of Canada.
    17. Stephane Bonhomme & Angela Denis, 2024. "Estimating Heterogeneous Effects: Applications to Labor Economics," Papers 2404.01495, arXiv.org.
    18. Lewbel, Arthur, 2022. "Kotlarski with a factor loading," Journal of Econometrics, Elsevier, vol. 229(1), pages 176-179.
    19. Schennach, Susanne M., 2019. "Convolution without independence," Journal of Econometrics, Elsevier, vol. 211(1), pages 308-318.
    20. Ben-Moshe, Dan, 2018. "Identification Of Joint Distributions In Dependent Factor Models," Econometric Theory, Cambridge University Press, vol. 34(1), pages 134-165, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:140:y:2015:i:c:p:31-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.