IDEAS home Printed from https://ideas.repec.org/p/crs/wpaper/2014-40.html
   My bibliography  Save this paper

Adaptive Deconvolution on the Nonnegative Real Line

Author

Listed:
  • Gwennaëlle Mabon

    (CREST)

Abstract

In this paper we consider the problem of adaptive density or survival function estimation in an additive model de ned by Z = X + Y with X independent of Y , when both random variables are nonnegative. We want to recover the distribution of X (density or survival function) through n observations of Z, assuming that the distribution of Y is known. This issue can be seen as the classical statistical problem of deconvolution which has been tackled in many cases using Fourier-type approaches. Nonetheless, in the present case the random variables have the particularity to be R+ supported. Knowing that, we propose a new angle of attack by building a projection estimator with an appropriate Laguerre basis. We present upper bounds on the mean squared integrated risk of our density and survival function estimators. We then describe a nonparametric adaptive strategy for selecting a relevant projection space. The procedures are illustrated with simulated data and compared to the performances of more classical deconvolution setting using a Fourier approach.

Suggested Citation

  • Gwennaëlle Mabon, 2014. "Adaptive Deconvolution on the Nonnegative Real Line," Working Papers 2014-40, Center for Research in Economics and Statistics.
  • Handle: RePEc:crs:wpaper:2014-40
    as

    Download full text from publisher

    File URL: http://crest.science/RePEc/wpstorage/2014-40.pdf
    File Function: Crest working paper version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Emmanuel Guerre & Isabelle Perrigne & Quang Vuong, 2000. "Optimal Nonparametric Estimation of First-Price Auctions," Econometrica, Econometric Society, vol. 68(3), pages 525-574, May.
    2. Elodie Guerre & I. Perrigne & Q.H. Vuong, 2000. "Optimal nonparametric estimation of first-price auctions [[Estimation nonparamétrique optimale des enchères au premier prix]]," Post-Print hal-02697497, HAL.
    3. A. Delaigle & I. Gijbels, 2004. "Bootstrap bandwidth selection in kernel density estimation from a contaminated sample," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 56(1), pages 19-47, March.
    4. Johanna Kappus & Gwennaelle Mabon, 2013. "Adaptive Density Estimation in Deconvolution Problems with Unknown Error Distribution," Working Papers 2013-31, Center for Research in Economics and Statistics.
    5. Bibinger, Markus & Jirak, Moritz & Reiss, Markus, 2014. "Improved volatility estimation based on limit order books," SFB 649 Discussion Papers 2014-053, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    6. Stefanski, Leonard A., 1990. "Rates of convergence of some estimators in a class of deconvolution problems," Statistics & Probability Letters, Elsevier, vol. 9(3), pages 229-235, March.
    7. F. Comte & C. Lacour, 2011. "Data‐driven density estimation in the presence of additive noise with unknown distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(4), pages 601-627, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gwennaëlle Mabon, 2014. "Adaptive Estimation of Random-Effects Densities In Linear Mixed-Effects Model," Working Papers 2014-41, Center for Research in Economics and Statistics.
    2. Johanna Kappus & Gwennaelle Mabon, 2013. "Adaptive Density Estimation in Deconvolution Problems with Unknown Error Distribution," Working Papers 2013-31, Center for Research in Economics and Statistics.
    3. Matthew Gentry & Tong Li & Jingfeng Lu, 2015. "Identification and estimation in first-price auctions with risk-averse bidders and selective entry," CeMMAP working papers CWP16/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Lamy, Laurent, 2012. "The econometrics of auctions with asymmetric anonymous bidders," Journal of Econometrics, Elsevier, vol. 167(1), pages 113-132.
    5. Moita, Rodrigo & Rezende, Leonardo, 2008. "Quantity-before-Price Auction: Evaluating the Performance of the Brazilian Existing Energy Market," Insper Working Papers wpe_151, Insper Working Paper, Insper Instituto de Ensino e Pesquisa.
    6. Fabienne Comte & Adeline Samson, 2012. "Nonparametric estimation of random-effects densities in linear mixed-effects model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 951-975, December.
    7. Cherchye, Laurens & Demuynck, Thomas & De Rock, Bram, 2013. "The empirical content of Cournot competition," Journal of Economic Theory, Elsevier, vol. 148(4), pages 1552-1581.
    8. Maréchal, François & Morand, Pierre-Henri, 2011. "First-price sealed-bid auctions when bidders exhibit different attitudes toward risk," Economics Letters, Elsevier, vol. 113(2), pages 108-111.
    9. Yao Luo & Isabelle Perrigne & Quang Vuong, 2018. "Structural Analysis of Nonlinear Pricing," Journal of Political Economy, University of Chicago Press, vol. 126(6), pages 2523-2568.
    10. Dirk Bergemann & Benjamin Brooks & Stephen Morris, 2022. "Counterfactuals with Latent Information," American Economic Review, American Economic Association, vol. 112(1), pages 343-368, January.
    11. Giovanni Compiani & Philip Haile & Marcelo Sant’Anna, 2020. "Common Values, Unobserved Heterogeneity, and Endogenous Entry in US Offshore Oil Lease Auctions," Journal of Political Economy, University of Chicago Press, vol. 128(10), pages 3872-3912.
    12. Brendstrup, Bjarne & Paarsch, Harry J., 2007. "Semiparametric identification and estimation in multi-object, English auctions," Journal of Econometrics, Elsevier, vol. 141(1), pages 84-108, November.
    13. John Geweke & Joel Horowitz & M. Hashem Pesaran, 2006. "Econometrics: A Bird’s Eye View," CESifo Working Paper Series 1870, CESifo.
    14. Harry J. Paarsch & Jacques Robert, 2003. "Testing Equilibrium Behaviour At First-Price, Sealed-Bid Auctions With Discrete Bid Increments," CIRANO Working Papers 2003s-32, CIRANO.
    15. Rodrigo Carril & Andres Gonzalez-Lira & Michael S. Walker, 2022. "Competition under Incomplete Contracts and the Design of Procurement Policies," Working Papers 1327, Barcelona School of Economics.
    16. JOUNEAU-SION, Frédéric & TORRES, Olivier, 2000. "Auctions with discrete increments: a structural econometric approach based on dominated strategies," LIDAM Discussion Papers CORE 2000046, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    17. Sundström, David, 2016. "On Specification and Inference in the Econometrics of Public Procurement," Umeå Economic Studies 931, Umeå University, Department of Economics.
    18. Orazio Attanasio & Elena Pastorino, 2020. "Nonlinear Pricing in Village Economies," Econometrica, Econometric Society, vol. 88(1), pages 207-263, January.
    19. Yingyao Hu & David McAdams & Matthew Shum, 2009. "Nonparametric identification of auction models with non-separable unobserved heterogeneity," CeMMAP working papers CWP15/09, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    20. Gaurab Aryal & Isabelle Perrigne & Quang Vuong, 2011. "Identification of Insurance Models with Multidimensional Screening," ANU Working Papers in Economics and Econometrics 2011-538, Australian National University, College of Business and Economics, School of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:crs:wpaper:2014-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Secretariat General (email available below). General contact details of provider: https://edirc.repec.org/data/crestfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.